Skip to main content

Boundary Control of Korteweg-de Vries and Kuramoto-Sivashinsky PDEs

Encyclopedia of Systems and Control
  • 607 Accesses

Abstract

The Korteweg-de Vries (KdV) and the Kuramoto-Sivashinsky (KS) partial differential equations are used to model nonlinear propagation of one-dimensional phenomena. The KdV equation is used in fluid mechanics to describe waves propagation in shallow water surfaces, while the KS equation models front propagation in reaction-diffusion systems. In this article, the boundary control of these equations is considered when they are posed on a bounded interval. Different choices of controls are studied for each equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Bibliography

  • Armaou A, Christofides PD (2000) Feedback control of the Kuramoto-Sivashinsky equation. Physica D 137:49–61

    Article  MATH  MathSciNet  Google Scholar 

  • Cerpa E (2010) Null controllability and stabilization of a linear Kuramoto-Sivashinsky equation. Commun Pure Appl Anal 9:91–102

    Article  MATH  MathSciNet  Google Scholar 

  • Cerpa E (2013) Control of a Korteweg-de Vries equation: a tutorial. Math Control Rel Fields, accepted

    Google Scholar 

  • Cerpa E, Coron J-M (2013) Rapid stabilization for a Korteweg-de Vries equation from the left dirichlet boundary condition. IEEE Trans Autom Control 58:1688–1695

    Article  MathSciNet  Google Scholar 

  • Cerpa E, Mercado A (2011) Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation. J Differ Equ 250:2024–2044

    Article  MATH  MathSciNet  Google Scholar 

  • Cerpa E, Rivas I, Zhang B-Y (2013) Boundary controllability of the Korteweg-de Vries equation on a bounded domain. SIAM J Control Optim, accepted

    Google Scholar 

  • Christofides PD, Armaou A (2000) Global stabilization of the Kuramoto-Sivashinsky equation via distributed output feedback control. Syst Control Lett 39:283–294

    Article  MATH  MathSciNet  Google Scholar 

  • Coron JM (2007) Control and nonlinearity. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Coron J-M, Crépeau E (2004) Exact boundary controllability of a nonlinear KdV equation with critical lengths. J Eur Math Soc 6:367–398

    Article  MATH  Google Scholar 

  • Glass O, Guerrero S (2008) Some exact controllability results for the linear KdV equation and uniform controllability in the zero-dispersion limit. Asymptot Anal 60:61–100

    MATH  MathSciNet  Google Scholar 

  • Glass O, Guerrero S (2010) Controllability of the KdV equation from the right Dirichlet boundary condition. Syst Control Lett 59:390–395

    Article  MATH  MathSciNet  Google Scholar 

  • Korteweg DJ, de Vries G (1895) On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos Mag 39:422–443

    Article  MATH  Google Scholar 

  • Krstic M (2009) Delay compensation for nonlinear, adaptive, and PDE systems. Birkhauser, Boston

    Book  MATH  Google Scholar 

  • Kuramoto Y, Tsuzuki T (1975) On the formation of dissipative structures in reaction-diffusion systems. Theor Phys 54:687–699

    Article  Google Scholar 

  • Lin Guo Y-J (2002) Null boundary controllability for a fourth order parabolic equation. Taiwan J Math 6:421–431

    MATH  Google Scholar 

  • Liu W-J, Krstic M (2001) Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation. Nonlinear Anal Ser A Theory Methods 43:485–507

    Article  MATH  MathSciNet  Google Scholar 

  • Perla Menzala G, Vasconcellos CF, Zuazua E (2002) Stabilization of the Korteweg-de Vries equation with localized damping. Q Appl Math LX:111–129

    Google Scholar 

  • Rosier L (1997) Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain. ESAIM Control Optim Calc Var 2:33–55

    Article  MATH  MathSciNet  Google Scholar 

  • Rosier L, Zhang B-Y (2009) Control and stabilization of the Korteweg-de Vries equation: recent progresses. J Syst Sci Complex 22:647–682

    Article  MathSciNet  Google Scholar 

  • Sivashinsky GI (1977) Nonlinear analysis of hydrodynamic instability in laminar flames – I derivation of basic equations. Acta Astronaut 4:1177–1206

    Article  MATH  MathSciNet  Google Scholar 

  • Smyshlyaev A, Krstic M (2010) Adaptive control of parabolic PDEs. Princeton University Press, Princeton

    MATH  Google Scholar 

  • Zhang BY (1999) Exact boundary controllability of the Korteweg-de Vries equation. SIAM J Control Optim 37:543–565

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Cerpa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Cerpa, E. (2013). Boundary Control of Korteweg-de Vries and Kuramoto-Sivashinsky PDEs. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Boundary Control of Korteweg-de Vries and Kuramoto-Sivashinsky PDEs
    Published:
    07 November 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_13-2

  2. Original

    Boundary Control of Korteweg-de Vries and Kuramoto-Sivashinsky PDEs
    Published:
    15 March 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_13-1