Skip to main content

Walking Robots

Encyclopedia of Systems and Control

Abstract

This article presents an overview of mobile “walking” robots that use their legs to move from one place to another. Walking robots represent a fascinating class of machines which holds the potential for breakthrough applications and inspires multidisciplinary research with rich scientific content. The key feature that separates walking robots from all other classes of mobile robots is their ability to explore unprepared surfaces using discrete footholds. In this respect, these robots are truly the machine counterparts of biological land animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Asimov I (1950) I, Robot. Bantam Dell, New York, NY

    Google Scholar 

  • Bares JE, Wettergreen DS (1999) Dante II: technical description, results, and lessons learned. Int J Robot Res 18(7):621–649

    Article  Google Scholar 

  • Chevallereau C, Westervelt ER, Grizzle JW (2005) Asymptotically stable running for a five-link, four-actuator, planar bipedal robot. Int J Robot Res 24(6):431–464

    Article  Google Scholar 

  • Falconer J (2013) NAO robot goes to school to help kids with autism. IEEE Specturm, May 2013. http://spectrum.ieee.org/automaton/robotics/humanoids/aldebaran-robotics-nao-robot-autism-solution-for-kids

  • Fujiwara K, Kanehiro F, Kajita S, Kaneko K, Yokoi K, Hirukawa H (2002) UKEMI: falling motion control to minimize damage to biped humanoid robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), St. Louis, pp 2521–2526

    Google Scholar 

  • Gouaillier D, Hugel V, Blazevic P, Kilner C, Monceaux J, Lafourcade P, Marnier B, Serre J, Maisonnier B (2009) Mechatronic design of NAO humanoid. In: IEEE international conference on robotics and automation (ICRA), Kobe, pp 2124–2129

    Google Scholar 

  • Hamilton E (1940). Collected Captain Future, Haffner Press, Royal Oak, Michigan

    Google Scholar 

  • http://en.wikipedia.org/wiki/Elektro

  • International Federation of Robotics (IFR) (2011) press release. http://www.ifr.org/news/ifr-press-release/50-years-industrial-robots-410/

  • Ishida T, Kuroki Y, Takahashi T (2004) Analysis of motions of a small biped entertainment robot. In: IEEE/RSJ international conference on intelligent robots and systems (IROS), Sendai, pp 142–147

    Google Scholar 

  • Kajita S, Espiau B (2008) Legged robots. In: Siciliano B, Khatib O (eds) Springer Handbook of Robotics. Springer, Berlin, pp 361–389

    Chapter  Google Scholar 

  • Kosuge K (2010) Dance partner robot: an engineering approach to human-robot interaction. In: 5th ACM/IEEE international conference on human-robot interaction (HRI), Osaka

    Google Scholar 

  • Lewinger WA, Branicky MS, Quinn RD (2005) Insect-inspired, actively compliant hexapod capable of object manipulation. In: Proceedings of the CLAWAR’2005 – 8th international conference on climbing and walking robots, Springer-Verlag Berlin Heidelberg

    Google Scholar 

  • Malone R (2004) Ultimate robot. DK Publishing, New York

    Google Scholar 

  • McGeer T (1990) Passive dynamic walking. Int J Robot Res 9(2):62–82

    Article  Google Scholar 

  • Raibert M (1989) Legged robots. In: Brady M (ed) Robotics science. System development foundation benchmark series. MIT, Cambridge

    Google Scholar 

  • Raibert M, Blankespoor K, Nelson G, Playter R, The BigDog Team (2008) BigDog, the rough-terrain quaduped robot. In: Proceedings of the 17th IFAC world congress, Seoul, pp 10822–10825

    Google Scholar 

  • Robins B, Dautenhahn K, Dickerson P (2012) Embodiment and cognitive learning – can a humanoid robot help children with autism to learn about tactile social behaviour. Soc Robot Lect Notes Comput Sci 7621:66–75

    Article  Google Scholar 

  • Sardain P, Bessonnet G (2004) Forces acting on a biped robot. Center of pressure-zero moment point. IEEE Trans Syst Man Cybern 34:630–637

    Article  Google Scholar 

  • Vukobratović M, Juričić D (1969) Contribution to the synthesis of biped gait. IEEE Trans Bio-Med Eng 16(1):1–6

    Article  Google Scholar 

  • Waldron KJ, McGhee RB (1986) The adaptive suspension vehicle. IEEE Control Syst Mag 6(6):7–12

    Article  Google Scholar 

  • Yamasaki F, Nakagawa Y (2006) Education using small humanoid robot. In: Proceedings of the 3rd international symposium on autonomous minirobots for research and edutainment (AMiRE 2005), Fukui, pp 248–253

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambarish Goswami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this entry

Cite this entry

Goswami, A. (2013). Walking Robots. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_179-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_179-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Walking Robots
    Published:
    04 December 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_179-2

  2. Original

    Walking Robots
    Published:
    06 April 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_179-1