Skip to main content

Output Regulation Problems in Hybrid Systems

Encyclopedia of Systems and Control
  • 334 Accesses

Abstract

This entry discusses some of the salient features of the output regulation problem for hybrid systems, especially in connection with the steady-state characterization. In order to better highlight such peculiarities, the discussion is mostly focused on the simplest class of linear time-invariant systems exhibiting such behaviors. In comparison with the usual regulation theory, the role played by the zero dynamics and by the presence of more inputs than outputs is particularly striking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Biemond J, van de Wouw N, Heemels W, Nijmeijer H (2013) Tracking control for hybrid systems with state-triggered jumps. IEEE Trans Autom Control 58(4):876–890

    Article  Google Scholar 

  • Byrnes CI, Priscoli FD, Isidori A (1997) Output regulation of uncertain nonlinear systems. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Carnevale D, Galeani S, Menini L (2012a) Output regulation for a class of linear hybrid systems. Part 1: trajectory generation. In: Conference on decision and control, Maui, pp 6151–6156

    Google Scholar 

  • Carnevale D, Galeani S, Menini L (2012b) Output regulation for a class of linear hybrid systems. Part 2: stabilization. In: Conference on decision and control, Maui, pp 6157–6162

    Google Scholar 

  • Carnevale D, Galeani S, Sassano M (2013) Necessary and sufficient conditions for output regulation in a class of hybrid linear systems. In: Conference on decision and control, Florence, pp 2659–2664

    Google Scholar 

  • Cox N, Teel AR, Marconi L (2011) Hybrid output regulation for minimum phase linear systems. In: American control conference, San Francisco, pp 863–868

    Google Scholar 

  • Cox N, Marconi L, Teel AR (2012) Hybrid internal models for robust spline tracking. In: Conference on decision and control, Maui, pp 4877–4882

    Google Scholar 

  • Davison E (1976) The robust control of a servomechanism problem for linear time-invariant multivariable systems. IEEE Trans Autom Control 21(1):25–34

    Article  MATH  MathSciNet  Google Scholar 

  • Forni F, Teel AR, Zaccarian L (2013a) Follow the bouncing ball: Global results on tracking and state estimation with impacts. IEEE Trans Autom Control 58(6):1470–1485

    Article  MathSciNet  Google Scholar 

  • Forni F, Teel AR, Zaccarian L (2013b) Reference mirroring for control with impacts. Daafouz J, Tarbouriech S, Sigalotti M (eds) Hybrid systems with constraints. John Wiley & Sons, Inc., Hoboken, pp 213–260. doi: 10.1002/9781118639856.ch8

    Google Scholar 

  • Francis B, Wonham W (1976) The internal model principle of control theory. Automatica 12(5):457–465

    Article  MATH  MathSciNet  Google Scholar 

  • Galeani S, Menini L, Potini A, Tornambe A (2008) Trajectory tracking for a particle in elliptical billiards. Int J Control 81(2):189–213

    Article  MATH  MathSciNet  Google Scholar 

  • Galeani S, Menini L, Potini A (2012) Robust trajectory tracking for a class of hybrid systems: an internal model principle approach. IEEE Trans Autom Control 57(2):344–359

    Article  MathSciNet  Google Scholar 

  • Goebel R, Sanfelice R, Teel A (2012) Hybrid dynamical systems: modeling, stability, and robustness. Princeton University Press, Princeton

    Google Scholar 

  • Huang J (2004) Nonlinear output regulation: theory and applications, vol 8. Society for Industrial Mathematics, Philadelphia

    Book  Google Scholar 

  • Marconi L, Teel AR (2010) A note about hybrid linear regulation. In: Conference on decision and control, Atlanta, pp 1540–1545

    Google Scholar 

  • Marconi L, Teel AR (2013) Internal model principle for linear systems with periodic state jumps. IEEE Trans Autom Control 58(11):2788–2802

    Article  MathSciNet  Google Scholar 

  • Morarescu I, Brogliato B (2010) Trajectory tracking control of multiconstraint complementarity lagrangian systems. IEEE Trans Autom Control 55(6):1300–1313

    Article  MathSciNet  Google Scholar 

  • Pavlov AV, Wouw N, Nijmeijer H (2005) Uniform output regulation of nonlinear systems: a convergent dynamics approach. Birkhäuser, Boston

    Google Scholar 

  • Saberi A, Stoorvogel A, Sannuti P (2000) Control of linear systems with regulation and input constraints. Springer, London

    Book  MATH  Google Scholar 

  • Sanfelice RG, Biemond JJ, van de Wouw N, Heemels W (2013) An embedding approach for the design of state-feedback tracking controllers for references with jumps. Int J Robust Nonlinear Control. doi:10.1002/rnc.2944

    Google Scholar 

  • Trentelman HL, Stoorvogel AA, Hautus MLJ (2001) Control theory for linear systems. Springer, London

    Book  MATH  Google Scholar 

  • Wonham W (1985) Linear multivariable control: a geometric approach. Applications of mathematics, vol 10, 3rd edn. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Galeani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Galeani, S. (2014). Output Regulation Problems in Hybrid Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, London. https://doi.org/10.1007/978-1-4471-5102-9_96-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5102-9_96-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, London

  • Online ISBN: 978-1-4471-5102-9

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Output Regulation Problems in Hybrid Systems
    Published:
    13 December 2019

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_96-2

  2. Original

    Output Regulation Problems in Hybrid Systems
    Published:
    05 April 2014

    DOI: https://doi.org/10.1007/978-1-4471-5102-9_96-1