Skip to main content

3D Face Reconstruction from Single Two-Tone and Color Images

  • Chapter
Shape Perception in Human and Computer Vision

Abstract

We explore the role of top-down processes in the recovery of the 3D shape of faces from single images. Class familiarity appears to play a significant role in the perception of shape in single images, as is demonstrated by the perception of two-tone (“Mooney”) images. We prove that under standard shape from shading assumptions, a Mooney image can give rise to multiple different 3D reconstructions. We further present an algorithm that by using just a single reference shape model—the face of a different individual or an average face—can achieves veridical reconstructions from two-tone images as well as gray-level and color images downloaded from the Internet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.princeton.edu/artofscience/gallery/view.php%3fid=77.html

  2. Atick JJ, Griffin PA, Redlich AN (1996) Statistical approach to shape from shading: reconstruction of 3d face surfaces from single 2d images. Neural Comput 8(6):1321–1340

    Article  Google Scholar 

  3. Basri R, Jacobs DW (2003) Lambertian reflectance and linear subspaces. PAMI 25(2)

    Google Scholar 

  4. Blanz V, Vetter TA (1999) A morphable model for the synthesis of 3d faces. Comput Graph I:187–194

    Google Scholar 

  5. Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: ECCV, vol 2

    Google Scholar 

  6. Dolan RJ, Fink GR, Rolls E, Booth M, Holmes A, Frackowiak RSJ, Friston KJ (1997) How the brain learns to see objects and faces in an impoverished context. Nature 389

    Google Scholar 

  7. Edwards GJ, Lanitis A, Taylor CJ, Cootes TF (1996) Modelling the variability in face images. In: Proc of the 2nd int conf on automatic face and gesture recognition, vol 2

    Google Scholar 

  8. George N, Jemel B, Fiori N, Renault B (1997) Face and shape repetition effects in humans: a spatio-temporal ERP study. NeuroReport 8(6):1417–1423

    Article  Google Scholar 

  9. Hegde J, Thompson S, Kersten D (2007) Identifying faces in two-tone (‘mooney’) images: a psychophysical and fMRI study. J Vis 7(9):624

    Article  Google Scholar 

  10. Horn BKP, Brooks MJ (eds) (1989) Shape from shading. MIT Press, Cambridge

    Google Scholar 

  11. Hursh TM (1976) The study of cranial form: measurement techniques and analytical methods. In: Giles E, Fiedlaender J (eds) The measures of man

    Google Scholar 

  12. Julesz B (1971) Foundations of cyclopean perception. The University of Chicago Press, Chicago

    Google Scholar 

  13. Kemelmacher I, Basri R (2006) Molding face shapes by example. In: ECCV, vol 1, pp 277–288

    Google Scholar 

  14. Kemelmacher I, Basri R (2011) 3d face reconstruction from a single image using a single reference face shape. IEEE Trans Pattern Anal Mach Intell 33(2):394–405

    Article  Google Scholar 

  15. Kemelmacher-Shlizerman I, Basri R, Nadler B (2008) 3d shape reconstruction of mooney faces. In: CVPR

    Google Scholar 

  16. Kemelmacher-Shlizerman I, Seitz SM (2011) Face reconstruction in the wild. In: ICCV

    Google Scholar 

  17. Kimmel R, Sethian JA (2001) Optimal algorithm for SFS and path planning. J Math Imaging Vis 14(3):237–244

    Article  MathSciNet  MATH  Google Scholar 

  18. Lanitis A, Taylor CJ, Cootes TF (1997) Automatic interpretation and coding of face images using flexible models. IEEE Trans Pattern Anal Mach Intell 19(7):743–756

    Article  Google Scholar 

  19. Marschner SR, Westin SH, Lafortune EPF, Torrance KE, Greenberg DP (1999) Image-based brdf measurement including human skin. In: 10th eurographics workshop on rendering, pp 139–152

    Google Scholar 

  20. Mooney CM (1957) Age in the development of closure ability in children. Can J Psychol 11:219–226

    Article  Google Scholar 

  21. Moore C, Cavanagh P (1998) Recovery of 3d volume from 2-tone images of novel objects. Cognition 67:45–71

    Article  Google Scholar 

  22. Ramamoorthi R, Hanrahan P (2001) On the relationship between radiance and irradiance: Determining the illumination from images of a convex Lambertian object. J Opt Soc Am 18(10):2448–2459

    Article  MathSciNet  Google Scholar 

  23. Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433

    Article  Google Scholar 

  24. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Natl Acad Sci USA 93:1591–1595

    Article  MathSciNet  MATH  Google Scholar 

  25. Sim T, Kanade T (2001) Combining models and exemplars for face recognition: an illuminating example. In: CVPR workshop on models versus exemplars

    Google Scholar 

  26. Smith WAP, Hancock ER (2005) Recovering facial shape and albedo using a statistical model of surface normal direction. In: ICCV

    Google Scholar 

  27. Tsitsiklis JN (1994) Efficient algorithms for globally optimal trajectories. In: Proc conf on decision and control

    Google Scholar 

  28. Yoon J, Winawer J, Wittoft N, Markman E (2007) Mooney image perception in preschool-aged children. J Vis 7(9):548

    Google Scholar 

  29. Zhang L, Samaras D (2003) Face recognition under variable lighting using harmonic image exemplars. In: CVPR

    Google Scholar 

  30. Zhou SK, Chellappa R, Jacobs DW (2004) Characterization of human faces under illumination variations using rank, integrability, and symmetry constraints. In: ECCV

    Google Scholar 

Download references

Acknowledgement

Research was supported in part by the Israel Science Foundation grant number 266/02 and by the European Commission Project IST-2002-506766 Aim Shape. The vision group at the Weizmann Institute is supported in part by the Moross Laboratory for Vision Research and Robotics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira Kemelmacher-Shlizerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Kemelmacher-Shlizerman, I., Basri, R., Nadler, B. (2013). 3D Face Reconstruction from Single Two-Tone and Color Images. In: Dickinson, S., Pizlo, Z. (eds) Shape Perception in Human and Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5195-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5195-1_19

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5194-4

  • Online ISBN: 978-1-4471-5195-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics