Skip to main content

Recognizing Human Actions by Using Effective Codebooks and Tracking

  • Chapter
Advanced Topics in Computer Vision

Abstract

Recognition and classification of human actions for annotation of unconstrained video sequences has proven to be challenging because of the variations in the environment, appearance of actors, modalities in which the same action is performed by different persons, speed and duration and points of view from which the event is observed. This variability reflects in the difficulty of defining effective descriptors and deriving appropriate and effective codebooks for action categorization. In this chapter, we present a novel and effective solution to classify human actions in unconstrained videos. In the formation of the codebook, we employ radius-based clustering with soft assignment in order to create a rich vocabulary that may account for the high variability of human actions. We show that our solution scores very good performance with no need of parameter tuning. We also show that a strong reduction of computation time can be obtained by applying codebook size reduction with Deep Belief Networks with little loss of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Please note that an earlier version of this work has recently appeared in IEEE Transactions on Multimedia [4].

  2. 2.

    http://lastlaugh.inf.cs.cmu.edu/libscom/downloads.htm

  3. 3.

    http://vision.ucsd.edu/%7epdollar/research.html

  4. 4.

    http://www.irisa.fr/vista/Equipe/People/Laptev/download.html

References

  1. Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

    Article  Google Scholar 

  2. Bagdanov AD, Dini F, Del Bimbo A, Nunziati W (2007) Improving the robustness of particle filter-based visual trackers using online parameter adaptation. In: Proc of AVSS

    Google Scholar 

  3. Ballan L, Bertini M, Del Bimbo A, Seidenari L, Serra G (2011) Event detection and recognition for semantic annotation of video. Multimed Tools Appl 51(1):279–302

    Article  Google Scholar 

  4. Ballan L, Bertini M, Del Bimbo A, Seidenari L, Serra G (2012) Effective codebooks for human action representation and classification in unconstrained videos. IEEE Trans Multimed 14(4):1234–1245

    Article  Google Scholar 

  5. Bernardin K, Stiefelhagen R (2008) Evaluating multiple object tracking performance: the CLEAR MOT metrics. EURASIP J Image Video Process 2008:246309

    Article  Google Scholar 

  6. Bobick AF, Davis JW (2001) The recognition of human movement using temporal templates. IEEE Trans Pattern Anal Mach Intell 23(3):257–267

    Article  Google Scholar 

  7. Bregonzio M, Gong S, Xiang T (2009) Recognising action as clouds of space-time interest points. In: Proc of CVPR

    Google Scholar 

  8. Cao L, Zicheng L, Huang T (2010) Cross-dataset action detection. In: Proc of CVPR

    Google Scholar 

  9. Carreira Perpinan MA, Hinton GE (2005) On contrastive divergence learning. In: Proc of AISTATS

    Google Scholar 

  10. Chen MY, Hauptmann AG (2009) MoSIFT: recognizing human actions in surveillance videos. Technical report, CMU

    Google Scholar 

  11. Comaniciu D, Meer P (2002) Mean shift: a robust approach toward feature space analysis. IEEE Trans Pattern Anal Mach Intell 24(5):603–619

    Article  Google Scholar 

  12. Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proc of CVPR

    Google Scholar 

  13. Dollár P, Rabaud V, Cottrell G, Belongie S (2005) Behavior recognition via sparse spatio-temporal features. In: Proc of VSPETS

    Google Scholar 

  14. Efros AA, Berg AC, Mori G, Malik J (2003) Recognizing action at a distance. In: Proc of ICCV

    Google Scholar 

  15. Fergus R, Perona P, Zisserman A (2003) Object class recognition by unsupervised scale-invariant learning. In: Proc of CVPR

    Google Scholar 

  16. Gao Z, Chen MY, Hauptmann AG, Cai A (2010) Comparing evaluation protocols on the KTH dataset. In: Proc of HBU workshop

    Google Scholar 

  17. Gorelick L, Blank M, Schechtman E, Irani M, Basri R (2007) Actions as space-time shapes. IEEE Trans Pattern Anal Mach Intell 29(12):2247–2253

    Article  Google Scholar 

  18. Hauptmann AG, Christel MG, Yan R (2008) Video retrieval based on semantic concepts. Proc IEEE 96(4):602–622

    Article  Google Scholar 

  19. Hinton EG, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  MathSciNet  MATH  Google Scholar 

  20. Hinton EG, Osindero S, Teh Y (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554

    Article  MathSciNet  MATH  Google Scholar 

  21. Jiang YG, Yang J, Ngo CW, Hauptmann AG (2010) Representations of keypoint-based semantic concept detection: a comprehensive study. IEEE Trans Multimed 12(1):42–53

    Article  Google Scholar 

  22. Jurie F, Triggs B (2005) Creating efficient codebooks for visual recognition. In: Proc of ICCV

    Google Scholar 

  23. Kläser A, Marszałek M, Schmid C (2008) A spatio-temporal descriptor based on 3D-gradients. In: Proc of BMVC

    Google Scholar 

  24. Kong Y, Zhang X, Hu W, Jia Y (2011) Adaptive learning codebook for action recognition. Pattern Recognit Lett 32(8):1178–1186

    Article  Google Scholar 

  25. Kovashka A, Grauman K (2010) Learning a hierarchy of discriminative space-time neighborhood features for human action recognition. In: Proc of CVPR

    Google Scholar 

  26. Laptev I (2005) On space-time interest points. Int J Comput Vis 64(2–3):107–123

    Article  Google Scholar 

  27. Laptev I, Marszałek M, Schmid C, Rozenfeld B (2008) Learning realistic human actions from movies. In: Proc of CVPR

    Google Scholar 

  28. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proc of CVPR

    Google Scholar 

  29. Lin Z, Jiang Z, Davis LS (2009) Recognizing actions by shape-motion prototype trees. In: Proc of ICCV

    Google Scholar 

  30. Liu J, Shah M (2008) Learning human actions via information maximization. In: Proc of CVPR

    Google Scholar 

  31. Liu J, Ali S, Shah M (2008) Recognizing human actions using multiple features. In: Proc of CVPR

    Google Scholar 

  32. Liu J, Luo J, Shah M (2009) Recognizing realistic actions from videos “in the wild”. In: Proc of CVPR

    Google Scholar 

  33. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. In: Proc of DARPA IU workshop

    Google Scholar 

  34. Marszałek M, Laptev I, Schmid C (2009) Actions in context. In: Proc of CVPR

    Google Scholar 

  35. Mikolajczyk K, Uemura H (2008) Action recognition with motion-appearance vocabulary forest. In: Proc of CVPR

    Google Scholar 

  36. Mikolajczyk K, Leibe B, Schiele B (2005) Local features for object class recognition. In: Proc of ICCV

    Google Scholar 

  37. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Van Gool L (2005) A comparison of affine region detectors. Int J Comput Vis 65(1/2):43–72

    Article  Google Scholar 

  38. Moeslund T, Hilton A, Krüger V (2006) A survey of advances in vision-based human motion capture and analysis. Comput Vis Image Underst 104(2–3):90–126

    Article  Google Scholar 

  39. Niebles JC, Wang H, Fei-Fei L (2008) Unsupervised learning of human action categories using spatial-temporal words. Int J Comput Vis 79(3):299–318

    Article  Google Scholar 

  40. Poppe R (2007) Vision-based human motion analysis: an overview. Comput Vis Image Underst 108(1–2):4–18

    Article  Google Scholar 

  41. Poppe R (2010) A survey on vision-based human action recognition. Image Vis Comput 28(6):976–990

    Article  Google Scholar 

  42. Rapantzikos K, Avrithis Y, Kollia S (2009) Dense saliency-based spatiotemporal feature points for action recognition. In: Proc of CVPR

    Google Scholar 

  43. Schüldt C, Laptev I, Caputo B (2004) Recognizing human actions: a local SVM approach. In: Proc of ICPR

    Google Scholar 

  44. Scovanner P, Ali S, Shah M (2007) A 3-dimensional SIFT descriptor and its application to action recognition. In: Proc of ACM multimedia

    Google Scholar 

  45. Shao L, Mattivi R (2010) Feature detector and descriptor evaluation in human action recognition. In: Proc of CIVR

    Google Scholar 

  46. Shao L, Gao R, Liu Y, Zhang H (2011) Transform based spatio-temporal descriptors for human action recognition. Neurocomputing 74(6):962–973

    Article  Google Scholar 

  47. Sivic J, Zisserman A (2003) Video Google: a text retrieval approach to object matching in videos. In: Proc of ICCV

    Google Scholar 

  48. Snoek CGM, Worring M, van Gemert JC, Geusebroek JM, Smeulders AWM (2006) The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proc of ACM multimedia

    Google Scholar 

  49. Sun X, Chen M, Hauptmann AG (2009) Action recognition via local descriptors and holistic features. In: Proc of CVPR4HB workshop

    Google Scholar 

  50. Turaga P, Chellappa R, Subrahmanian V, Udrea O (2008) Machine recognition of human activities: a survey. IEEE Trans Circuits Syst Video Technol 18(11):1473–1488

    Article  Google Scholar 

  51. van der Maaten L, Postma E, van den Herik H (2009) Dimensionality reduction: a comparative review. Technical report TiCC-TR 2009-005, Tilburg University

    Google Scholar 

  52. van Gemert JC, Veenman CJ, Smeulders AWM, Geusebroek JM (2010) Visual word ambiguity. IEEE Trans Pattern Anal Mach Intell 32(7):1271–1283

    Article  Google Scholar 

  53. Vezzani R, Cucchiara R (2010) Video surveillance online repository (ViSOR): an integrated framework. Multimed Tools Appl 50(2):359–380

    Article  Google Scholar 

  54. Wang Y, Mori G (2009) Max-margin hidden conditional random fields for human action recognition. In: Proc of CVPR

    Google Scholar 

  55. Wang H, Ullah MM, Kläser A, Laptev I, Schmid C (2009) Evaluation of local spatio-temporal features for action recognition. In: Proc of BMVC

    Google Scholar 

  56. Willems G, Tuytelaars T, Van Gool L (2008) An efficient dense and scale-invariant spatio-temporal interest point detector. In: Proc of ECCV

    Google Scholar 

  57. Wong SF, Cipolla R (2007) Extracting spatiotemporal interest points using global information. In: Proc of ICCV

    Google Scholar 

  58. Wu B, Nevatia R (2007) Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int J Comput Vis 75(2):247–266

    Article  Google Scholar 

  59. Yao A, Gall J, Van Gool L (2010) A hough transform-based voting framework for action recognition. In: Proc of CVPR

    Google Scholar 

  60. Yilmaz A, Shah M (2005) Actions sketch: a novel action representation. In: Proc of CVPR

    Google Scholar 

  61. Yu G, Goussies N, Yuan J, Liu Z (2011) Fast action detection via discriminative random forest voting and top-k subvolume search. IEEE Trans Multimed 13(3):507–517

    Article  Google Scholar 

  62. Zhang J, Marszałek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: a comprehensive study. Int J Comput Vis 73(2):213–238

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamberto Ballan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Ballan, L., Seidenari, L., Serra, G., Bertini, M., Del Bimbo, A. (2013). Recognizing Human Actions by Using Effective Codebooks and Tracking. In: Farinella, G., Battiato, S., Cipolla, R. (eds) Advanced Topics in Computer Vision. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5520-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5520-1_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5519-5

  • Online ISBN: 978-1-4471-5520-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics