Abstract
The majority of work in person re-identification is focused primarily on the matching process at an algorithmic level, from identifying reliable features to formulating effective classifiers and distance metrics in order to improve matching scores on established ‘closed-world’ benchmark datasets of limited scope and size. Very little work has explored the pragmatic and ultimately challenging question of how to engineer working systems that best leverage the strengths and tolerate the weaknesses of the current state of the art in re-identification techniques, and which are capable of scaling to ‘open-world’ operational requirements in a large urban environment. In this work, we present the design rationale, implementational considerations and quantitative evaluation of a retrospective forensic tool known as Multi-Camera Tracking (MCT). The MCT system was developed for re-identifying and back-tracking individuals within huge quantities of open-world CCTV video data sourced from a large distributed multi-camera network encompassing different public transport hubs in a metropolis. There are three key characteristics of MCT, associativity, capacity and accessibility, that underpin its scalability to spatially large, temporally diverse, highly crowded and topologically complex urban environments with transport links. We discuss a multitude of functional features that in combination address these characteristics. We consider computer vision techniques and machine learning algorithms, including relative feature ranking for inter-camera matching, global (crowd-level) and local (person-specific) space–time profiling, attribute re-ranking and machine-guided data mining using a ‘man-in-the-loop’ interactive paradigm. We also discuss implementational considerations designed to facilitate linear scalability to an aribitrary number of cameras by employing a distributed computing architecture. We conduct quantitative trials to illustrate the potential of the MCT system and its performance characteristics in coping with very large-scale open-world multi-camera data covering crowded transport hubs in a metropolis.
This work is dedicated to Colin Lewis, in memory of his lifelong passion for pushing the boundaries in making academic research relevant to meeting real-world challenges, and for his unequivocal support in making this work possible.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chang, C., Lin, C.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27:1–27:27 (2011)
Chapelle, O., Keerthi, S.: Efficient algorithms for ranking with SVMs. Inf. Retrieval 13(3):201–215 (2010)
Felzenszwalb, P., Girshick, R., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2010)
Gheissari, N., Sebastian, T., Hartley, R.: Person reidentification using spatiotemporal appearance. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1528–1535 (2006)
Hahnel, M., Klunder, D., Kraiss, K.F.: Color and texture features for person recognition. In: IEEE International Joint Conference on Neural Networks, vol. 1, pp. 647–652 (2004)
Joachims, T.: Optimizing search engines using clickthrough data. In: Knowledge Discovery and Data Mining, pp. 133–142 (2010)
Kuhn, H.: The hungarian method for the assignment problem. Naval Res. Logist. Quarterly 2, 83–97 (1955)
Layne, R., Hospedales, T., Gong, S.: Person re-identification by attributes. In: British Machine Vision Conference, Guildford, UK (2012)
Layne, R., Hospedales, T., Gong, S.: Towards person identification and re-identification with attributes. In: European Conference on Computer Vision, First International Workshop on Re-Identification. Firenze, Italy (2012)
Loy, C.C., Xiang, T., Gong, S.: Multi-camera activity correlation analysis. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1988–1995 (2009)
Loy, C.C., Xiang, T., Gong, S.: Time-delayed correlation analysis for multi-camera activity understanding. Int. J. Comput. Vis. 90(1), 106–129 (2010)
Madden, C., Cheng, E., Piccardi, M.: Tracking people across disjoint camera views by an illumination-tolerant appearance representation. Mach. Vis. Appl. 18(3), 233–247 (2007)
Munkres, J.: Algorithms for the assignment and transportation problems. J. Soc. Ind. Appl. Math. 5(1), 32–38 (1957)
Prosser, B., Gong, S., Xiang, T.: Multi-camera matching under illumination change over time. In: European Conference on Computer Vision, Workshop on Multi-camera and Multi-model Sensor Fusion (2008)
Prosser, B., Zheng, W., Gong, S., Xiang, T.: Person re-identification by support vector ranking. In: British Machine Vision Conference, Aberystwyth, UK (2010)
Raja, Y., Gong, S.: Scaling up multi-camera tracking for real-world deployment. In: Proceedings of the SPIE Conference on Optics and Photonics for Counterterrorism, Crime Fighting and Defence, Edinburgh, UK (2012)
Raja, Y., Gong, S., Xiang, T.: Multi-source data inference for object association. In: IMA Conference on Mathematics in Defence, Shrivenham, UK (2011)
Schmid, C.: Constructing models for content-based image retrieval. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 30–45 (2001)
UK Home Office: i-LIDS dataset: Multiple camera tracking scenario. http://scienceandresearch.homeoffice.gov.uk/hosdb/cctv-imaging-technology/i-lids/ (2010)
Wang, H., Suter, D., Schindler, K.: Effective appearance model and similarity measure for particle filtering and visual tracking. In: European Conference on Computer Vision, pp. 606–618, Graz, Austria (2006)
Zheng, W., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 649–656, Colorado Springs, USA (2011)
Zheng, W., Gong, S., Xiang, T.: Re-identification by relative distance comparison. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 653–668 (2013)
Acknowledgments
We thank Lukasz Zalewski, Tao Xiang, Robert Koger, Tim Hospedales, Ryan Layne, Chen Change Loy and Richard Howarth of Vision Semantics and Queen Mary University of London who contributed to this work; Colin Lewis, Gari Owen and Andrew Powell of the UK MOD SA(SD) who made this work possible; Zsolt Husz, Antony Waldock, Edward Campbell and Paul Zanelli of BAE Systems who collaborated on this work; and Toby Nortcliffe of the UK Home Office CAST who assisted in setting up the trial environment and data capture.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag London
About this chapter
Cite this chapter
Raja, Y., Gong, S. (2014). Scalable Multi-camera Tracking in a Metropolis. In: Gong, S., Cristani, M., Yan, S., Loy, C. (eds) Person Re-Identification. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6296-4_20
Download citation
DOI: https://doi.org/10.1007/978-1-4471-6296-4_20
Published:
Publisher Name: Springer, London
Print ISBN: 978-1-4471-6295-7
Online ISBN: 978-1-4471-6296-4
eBook Packages: Computer ScienceComputer Science (R0)