Skip to main content

Wireless Sensor Microsystem Design: A Practical Perspective

  • Chapter
  • First Online:
  • 4603 Accesses

Abstract

The development of small sensory systems for use in distributed networks as well as single autonomous devices has been actively pursued for more than 50 years. The stimulant to this activity, as with most modern technologies, was the invention of the transistor that made miniaturisation possible. The earliest wireless sensor devices were developed for use in a range of applications, including wireless animal tracking and medical instrumentation (Mackay RS, Bio-medical telemetry – sensing and transmitting biological information from animals and man. Wiley, New York, 1968). Although there was considerable activity in the field during the 1950s and 1960s (Mackay RS, Science 134:1196–1202, 1961), continuing research appeared to recede in subsequent years. However, in the 1970s and 1980s, the microelectronics industry rapidly developed after the invention of the first integrated circuit (IC) microprocessor (Lewin MH, IEEE Trans Circuit Syst 22(7):577–585, 1975) for use in personal computers and work stations. The rapid growth in consumer electronic products, exemplified by mobile communications and the Internet in the 1990s, made researchers and practitioners realise the potential for personalised wireless systems incorporating location sensitive information and sensor technologies. In essence, these devices owe much to the early work of pioneers, but modern designs will depend heavily on new emerging technologies such as System-on-Chip (SoC) and the implementation of mobile (wireless) communication protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mackay RS. Bio-medical telemetry - sensing and transmitting biological information from animals and man. New York: John Wiley & Sons, 1968.

    Google Scholar 

  2. Mackay RS. Radio telemetering from within the body. Science, 1961; 134:1196–1202.

    Article  Google Scholar 

  3. Lewin MH. Integrated microprocessors. IEEE Transactions on Circuits and Systems, 1975; 22 (7):577–585.

    Article  Google Scholar 

  4. Hierlemann A, Baltes H. CMOS-based chemical microsensors. Analyst, 2003; 128:15–28.

    Article  Google Scholar 

  5. Graf M, Barrettino D, Zimmermann M et al. CMOS monolithic metal-oxide sensor system comprising a microhotplate and associated circuitry. IEEE Sensors Journal, 2004; 4 (1):9–16.

    Article  Google Scholar 

  6. Hammond PA, Ali D, Cumming DRS. Design of a single-chip pH sensor using a conventional 0.6 μm CMOS process. IEEE Sensors Journal, 2004; 4 (6):706–712.

    Article  Google Scholar 

  7. Chirwa LC, Hammond PA, Roy S, Cumming DRS. Electromagnetic radiation from ingested sources in the human intestine between 150 MHz and 1.2 GHz. IEEE Transactions on Biomedical Engineering, 2003; 50 (4):484–492.

    Article  Google Scholar 

  8. Madou MJ, Cubicciotti R. Scaling issues in chemical and biological sensors. In: Proceedings of the IEEE, 2003; 91 (6):830–838.

    Google Scholar 

  9. Wang L, Johannessen EA, Hammond PA et al. A programmable microsystem using system-on-chip for real-time biotelemetry. IEEE Transactions on Biomedical Engineering, 2005; 52 (7):1251–1260.

    Article  Google Scholar 

  10. Beeley JM, Mills C, Hammond PA et al. All-digital interface ASIC for a QCM-based electronic nose. Sensors and Actuators B: Chemical, 2004; 103 (1–2):31–36.

    Article  Google Scholar 

  11. Cotton PB, Williams CB. Practical gastrointestinal endoscopy. Oxford: Blackwell Scientific, 1980.

    Google Scholar 

  12. Lee R. Manual of small animal diagnostic imaging. Gloucester: British Small Animal Veterinary Association, 1995.

    Google Scholar 

  13. Gladman LM, Gorard DA. General practitioner and hospital specialist attitudes to functional gastrointestinal disorders. Alimentary pharmacology & therapeutics, 2003; 17 (5):651–654.

    Article  Google Scholar 

  14. Mackay RS, Jacobson B. Endoradiosonde. Nature, 1957; 179:1239–1240.

    Article  Google Scholar 

  15. Farrar JT, Zworykin VK, Baum J. Pressure-sensitive telemetering capsule for study of gastrointestinal motility. Science, 1957; 126:975–976.

    Article  Google Scholar 

  16. Iddan G, Meron G, Glukhovsky A, Swain P. Wireless capsule endoscopy. Nature, 2000; 405 (6785):417.

    Article  Google Scholar 

  17. Ciuti G, Menciassi A, Dario P. Capsule endoscopy: from current achievements to open challenges. IEEE Reviews in Biomedical Engineering, 2011; 4:59–72.

    Article  Google Scholar 

  18. Fisher LR, Hasler WL. New vision in video capsule endoscopy: current status and future directions. Nature reviews Gastroenterology & hepatology, 2012; 9 (7):392–405.

    Article  Google Scholar 

  19. Johannessen EA, Wang L, Cui L et al. Implementation of multichannel sensors for remote biomedical measurements in a microsystems format. IEEE Transactions on Biomedical Engineering, 2004; 51 (3):525–535.

    Article  Google Scholar 

  20. Weitschies W, Karaus M, Cordini D et al. Magnetic marker monitoring of disintegrating capsules. European Journal of Pharmaceutical Sciences, 2001; 13 (4):411–416.

    Article  Google Scholar 

  21. Phee L, Accoto D, Menciassi A et al. Analysis and development of locomotion devices for the gastrointestinal tract. IEEE Transactions on Biomedical Engineering, 2002; 49 (6):613–616.

    Article  Google Scholar 

  22. Guo S, Sugimoto K, Fukuda T, Oguro K. A new type of capsule medical micropump. In: Proceedings of the 19th IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 1999. pp 55–60.

    Google Scholar 

  23. Sendoh M, Ishiyama K, Arai KI. Fabrication of magnetic actuator for use in a capsule endoscope. IEEE Transactions on Magnetics, 2003; 39 (5):3232–3234.

    Article  Google Scholar 

  24. Li H, Yan G, Ma G. An active endoscopic robot based on wireless power transmission and electromagnetic localization. The international journal of medical robotics + computer assisted surgery : MRCAS, 2008; 4 (4):355–367.

    Article  Google Scholar 

  25. Miller KM, Mahoney AW, Schmid T, Abbott JJ. Proprioceptive magnetic-field sensing for closed-loop control of magnetic capsule endoscopes. In: Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, 7–12 Oct. 2012. pp 1994–1999.

    Google Scholar 

  26. Al-Rawhani MA, Chitnis D, Beeley J, Collins S, Cumming DRS. Design and Implementation of a Wireless Capsule Suitable for Autofluorescence Intensity Detection in Biological Tissues. IEEE Transactions on Biomedical Engineering, 2013; 60 (1):55–62.

    Article  Google Scholar 

  27. Peng D, Zhang J, Wang L. Experimental result on wireless power management microsystem for endoscopic capsule robot. In: 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), 5–7 Jan. 2012. pp 810–813.

    Google Scholar 

  28. Alonso O, Freixas L, Dieguez A. Advancing towards smart endoscopy with specific electronics to enable locomotion and focusing capabilities in a wireless endoscopic capsule robot. In: Biomedical Circuits and Systems Conference, 2009. BioCAS 2009. IEEE, 26–28 Nov. 2009. pp 213–216.

    Google Scholar 

  29. Sehyuk Y, Sitti M. Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope. Robotics, IEEE Transactions on, 2012; 28 (1):183–194.

    Article  Google Scholar 

  30. Valdastri P, Simi M, Webster RJ, 3rd. Advanced technologies for gastrointestinal endoscopy. Annual review of biomedical engineering, 2012; 14:397–429.

    Article  Google Scholar 

  31. Di Natali C, Beccani M, Valdastri P. Real-Time Pose Detection for Magnetic Medical Devices. Magnetics, IEEE Transactions on, 2013; 49 (7):3524–3527.

    Article  Google Scholar 

  32. Skidmore M. Mini transmitter saves babies. NASA Aerospace Technology Innovation, 1999; 7 (1):7–8.

    Google Scholar 

  33. Given Imaging Ltd, http://www.givenimaging.com, 2013.

  34. Tortora G, Valdastri P, Susilo E et al. Propeller-based wireless device for active capsular endoscopy in the gastric district. Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy, 2009; 18 (5):280–290.

    Article  Google Scholar 

  35. Carta R, Tortora G, Thone J et al. Wireless powering for a self-propelled and steerable endoscopic capsule for stomach inspection. Biosensors & bioelectronics, 2009; 25 (4):845–851.

    Article  Google Scholar 

  36. Sayaka capsule system Available: http://www.rfsystemlab.com/en/sayaka, 2013.

  37. Valdastri P, Webster RJ, Quaglia C et al. A new mechanism for mesoscale legged locomotion in compliant tubular environments. IEEE Transactions on Robotics, 2009; 25 (5):1047–1057.

    Article  Google Scholar 

  38. Swain P. Wireless capsule endoscopy. Gut, 2003; 52 (Supplement IV):48–50.

    Google Scholar 

  39. Toennies JL, Tortora G, Simi M, Valdastri P, Webster RJ. Swallowable medical devices for diagnosis and surgery: The state of the art. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2010; 224 (7):1397–1414.

    Google Scholar 

  40. Woo SH, Kim TW, Mohy-Ud-Din Z, Park IY, Cho J-H. Small intestinal model for electrically propelled capsule endoscopy. BioMedical Engineering OnLine, 2011; 10 (1):108.

    Article  Google Scholar 

  41. Mosse CA, Mills TN, Appleyard MN, Kadirkamanathan SS, Swain CP. Electrical stimulation for propelling endoscopes. Gastrointestinal endoscopy, 2001; 54 (1):79–83.

    Article  Google Scholar 

  42. Weida L, Wei G, Mantian L, Yuhong Z. A novel locomotion principle for endoscopic robot. In: In: Proceedings of the 2006 I.E. International Conference on Mechatronics and Automation, 25–28 June 2006. pp 1658–1662.

    Google Scholar 

  43. Byungkyu K, Sukho P, Chang Yeol J, Yoon S-J. An earthworm-like locomotive mechanism for capsule endoscopes. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005). 2–6 Aug. 2005. pp 2997–3002.

    Google Scholar 

  44. Chongqing Jinshan Science and Technology Co. Ltd, Available: http://english.jinshangroup.com, 2013.

  45. Keller H, Juloski A, Kawano H et al. Method for navigation and control of a magnetically guided capsule endoscope in the human stomach. In: Biomedical Robotics and Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International Conference on, 24–27 June 2012. pp 859–865.

    Google Scholar 

  46. Keller J, Fibbe C, Volke F et al. Remote magnetic control of a wireless capsule endoscope in the esophagus is safe and feasible: results of a randomized, clinical trial in healthy volunteers. Gastrointestinal endoscopy, 2010; 72 (5):941–946.

    Article  Google Scholar 

  47. Carpi F, Kastelein N, Talcott M, Pappone C. Magnetically Controllable Gastrointestinal Steering of Video Capsules. Biomedical Engineering, IEEE Transactions on, 2011; 58 (2):231–234.

    Article  Google Scholar 

  48. Pandolfino JE, Richter JE, Ours T et al. Ambulatory esophageal pH monitoring using a wireless system. American Journal of Gastroenterology, 2003; 98 (4):740–749.

    Article  Google Scholar 

  49. Sasaki Y, Hada R, Nakajima H, Fukuda S, Munakata A. Improved localizing method of radiopill in measurement of entire gastrointestinal pH profiles: colonic luminal pH in normal subjects and patients with Crohn’s disease. American Journal of Gastroenterology, 1997; 92 (1):114–118.

    Google Scholar 

  50. Press AG, Hauptmann IA, Hauptmann L et al. Gastrointestinal pH profiles in patients with inflammatory bowel disease. Alimentary pharmacology & therapeutics, 1998; 12 (7):673–678.

    Article  Google Scholar 

  51. Wolff HS. The radio pill. New Scientist, 1961; 12 (261):419–421.

    Google Scholar 

  52. Watson B, Kay A. Radio-telemetering with special reference to the gastrointestinal track. Biomechanics and Related Bio-Engineering Topics, 1965:111–127.

    Google Scholar 

  53. Watson BW, Meldrum SJ, Riddle HC, Brown RL, Sladen GE. pH profile of gut as measured by radiotelemetry capsule. British Medical Journal, 1972; 2:104–106.

    Article  Google Scholar 

  54. Colson RH, Watson BW, Fairclough PD et al. An accurate, long-term, pH-sensitive radio pill for ingestion and implantation. Biotelemetry and patient monitoring, 1981; 8 (4):213–227.

    Google Scholar 

  55. Evans DF, Pye G, Bramley R et al. Measurement of gastrointestinal pH profiles in normal ambulant human subjects. Gut, 1988; 29 (8):1035–1041.

    Article  Google Scholar 

  56. Kramer K, Kinter LB. Evaluation and applications of radiotelemetry in small laboratory animals. Physiological Genomics, 2003; 13:197–205.

    Google Scholar 

  57. Peters G. A new device for monitoring gastric pH in free-ranging animals. American Journal of Physiology, 1997; 273 (3 Pt 1):G748–753.

    Google Scholar 

  58. Enemark JM, Peters G, Jorgensen RJ. Continuous monitoring of rumen pH - a case study with cattle. Journal of Veterinary Medicine A, 2003; 50 (2):62–66.

    Article  Google Scholar 

  59. ISO 11785 and ISO 3166.

    Google Scholar 

  60. Powers RA. Batteries for low power electronics. In: Proceedings of the IEEE, 1995; 83 (4):687–693.

    Google Scholar 

  61. Recommendation 70-30 relating to the use of short range devices (SRD). In: Proceedings of the European Conference of Postal and Telecommunications Administrations (CEPT), Tromso, Norway, CEPT/ERC/TR70-03, 1997.

    Google Scholar 

  62. Aydin N, Arslan T, Cumming DR. A direct-sequence spread-spectrum communication system for integrated sensor microsystems. IEEE Transactions on Information Technology in Biomedicine, 2005; 9 (1):4–12.

    Article  Google Scholar 

  63. Nikolaidis I, Barbeau M, Kranakis E. Ad-Hoc, Mobile, and Wireless Networks: Lecture Notes in Computer Science. Heidelberg: Springer-Verlag, 2004; 3158.

    Book  Google Scholar 

  64. Park HJ, Park IY, Lee JW et al. Design of miniaturized telemetry module for bi-directional wireless endoscopes. In: IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2003. pp 1487–1491.

    Google Scholar 

  65. Wang L, Johannessen EA, Cui L et al. Networked wireless microsystem for remote gastrointestinal monitoring. In: Digest of Technical Papers for the Twelfth International Conference on Solid-State Sensors, Actuators and Microsystems, 8–12 June 2003. pp 1184–1187 vol.1182.

    Google Scholar 

  66. Gardner JW. Microsensors – principles and applications. Chichester: John Wiley and Sons, 1994.

    Google Scholar 

  67. Müller T, Brandl M, Brand O, Baltes H. An industrial CMOS process family adapted for the fabrication of smart silicon sensors. Sensors and Actuators A: Physical, 2000; 84 (1–2):126–133.

    Article  Google Scholar 

  68. Tea NH, Milanovic V, Zincke CA et al. Hybrid postprocessing etching for CMOS-compatible MEMS. Journal of Microelectromechanical Systems, 1997; 6 (4):363–372.

    Article  Google Scholar 

  69. Guillou DF, Santhanam S, Carley LR. Laminated, sacrificial-poly MEMS technology in standard CMOS. Sensors and Actuators A: Physical, 2000; 85(1–3):346–355.

    Article  Google Scholar 

  70. Krüger C, Pfeffer JG, Mokwa W et al. Intravascular pressure monitoring system. In: Proceedings of the European Conference on Solid-State Transducers, M3C1, 2002.

    Google Scholar 

  71. Dudaicevs H, Kandler M, Manoli Y, Mokwa W, Spiegel E. Surface micromachined pressure sensors with integrated CMOS read-out electronics. Sensors and Actuators A: Physical, 1994; 43 (1–3):157–163.

    Article  Google Scholar 

  72. Hagleitner C, Hierlemann A, Lange D et al. Smart single-chip gas sensor microsystem. Nature, 2001; 414 (6861):293–296.

    Article  Google Scholar 

  73. DeBusschere BD, Kovacs GTA. Portable cell-based biosensor system using integrated CMOS cell-cartridges. Biosensors and Bioelectronics, 2001; 16 (7–8):543–556.

    Article  Google Scholar 

  74. Simpson ML, Sayler GS, Applegate BM et al. Bioluminescent-bioreporter integrated circuits form novel whole-cell biosensors. Trends in Biotechnology, 1998; 16 (8):332–338.

    Article  Google Scholar 

  75. Zhang Y, Ma KK, Yao Q. A software/hardware co-design methodology for embedded microprocessor core design. In: IEEE Transactions on Consumer Electronics, 1999; 45 (4):1241–1246.

    Google Scholar 

  76. Kundert K, Chang H, Jefferies D et al. Design of mixed-signal systems-on-a-chip. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2000; 19 (12):1561–1571.

    Article  Google Scholar 

  77. Wang L, Thiemjarus S, Lo B, Yang GZ. Toward a mixed-signal reconfigurable ASIC for real-time activity recognition. In: 5th International Summer School and Symposium on Medical Devices and Biosensors, 2008. ISSS-MDBS 2008., 1–3 June 2008. pp 227–230.

    Google Scholar 

  78. Wang L, Ren S, Liu B, Wang G, Zhang J. A CMOS discrete-time reconfigurable analogue ASIC for low power biomedical signal filtering. In: 3rd International Conference on Bioinformatics and Biomedical Engineering, 2009. ICBBE 2009., 11–13 June 2009. pp 1–4.

    Google Scholar 

  79. Nie ZD, Wang L, Chen WG, Zhang T, Zhang YT. A low power biomedical signal processor ASIC based on hardware software codesign. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Conference, 2009:2559–2562.

    Google Scholar 

  80. Zhang J, Nie Z, Huang J, Yu L, Wang L. Towards low frequency low noise low power body sensor network-on-chip. In: International Conference on Green Circuits and Systems (ICGCS), 21–23 June 2010. pp 115–117.

    Google Scholar 

  81. Sjöholm S, Lindh L. VHDL for designers. Prentice Hall, 1997.

    Google Scholar 

  82. Toftgard J, Hornsleth SN, Andersen JB. Effects on portable antennas of the presence of a person. IEEE Transactions on Antennas and Propagation, 1993; 41 (6):739–746.

    Article  Google Scholar 

  83. Okoniewski M, Stuchly MA. A study of the handset antenna and human body interaction. IEEE Transactions on Microwave Theory and Techniques, 1996; 44 (10):1855–1864.

    Article  Google Scholar 

  84. Scanlon WG, Burns B, Evans NE. Radiowave propagation from a tissue-implanted source at 418 MHz and 916.5 MHz. IEEE Transactions on Biomedical Engineering, 2000; 47 (4):527–534.

    Article  Google Scholar 

  85. Ahmadian M, Flynn BW, Murray AF, Cumming DRS. Data transmission for implantable microsystems using magnetic coupling. IEE Proceedings on Communications, 2005; 152 (2):247–250.

    Article  Google Scholar 

  86. Nie Z, Ma J, Li Z, Chen H, Wang L. Dynamic propagation channel characterization and modeling for human body communication. Sensors, 2012; 12 (12):17569–17587.

    Article  Google Scholar 

  87. Ruoyu X, Wai Chiu N, Hongjie Z, Hengying S, Jie Y. Equation environment coupling and interference on the electric-field intrabody communication channel. IEEE Transactions on Biomedical Engineering, 2012; 59 (7):2051–2059.

    Article  Google Scholar 

  88. Roundy S, Steingart D, Frechette L, Wright P, Rabaey J. Power sources for wireless sensor networks. LNCS, 2004; 2920:1–17.

    Google Scholar 

  89. Wen-cheng W, Ze-dong N, Feng G, Teng-fei L, Lei W. Experimental Studies on Human Body Communication Characteristics Based Upon Capacitive Coupling. In: Body Sensor Networks (BSN), 2011 International Conference on, 23–25 May 2011 2011. pp 180–185.

    Google Scholar 

  90. United Kingdom regulations for adults exposed to radiation in the band from 10 MHz to 60 MHz. http://www.who.int/docstore/peh-emf/EMFStandards/who-0102/Worldmap5.htm.

  91. McCaffrey C, Chevalerias O, O’Mathuna C, Twomey K. Swallowable-capsule technology. IEEE Pervasive Computing, 2008; 7 (1):23–29.

    Article  Google Scholar 

  92. Revolutionary sight restoration. Brochure by Nano Retina Inc, available at http://www.nano-retina.com.

  93. Chovelon JM, Jaffrezic-Renault N, Cros Y, Fombon JJ, Pedone D. Monitoring of ISFET encapsulation aging by impedance measurements. Sensors and Actuators B: Chemical, 1991; 3 (1):43–50.

    Article  Google Scholar 

  94. Sibbald A, Whalley PD, Covington AK. A miniature flow-through cell with a four-function CHEMFET integrated circuit for simultaneous measurements of potassium, hydrogen, calcium and sodium ions. Analytica Chimica Acta, 1984; 159:47–62.

    Article  Google Scholar 

  95. Grisel A, Francis C, Verney E, Mondin G. Packaging technologies for integrated electrochemical sensors. Sensors and Actuators, 1989; 17 (1–2):285–295.

    Article  Google Scholar 

  96. Gràcia I, Cané C, Lora-Tamayo E. Electrical characterization of the aging of sealing materials for ISFET chemical sensors. Sensors and Actuators B: Chemical, 1995; 24 (1–3):206–210.

    Article  Google Scholar 

  97. Muñoz J, Bratov A, Mas R et al. Planar compatible polymer technology for packaging of chemical microsensors. Journal of the Electrochemical Society, 1996; 143 (6):2020–2025.

    Article  Google Scholar 

  98. Matsuo T, Esashi M. Methods of ISFET fabrication. Sensors and Actuators, 1981; 1:77–96.

    Article  Google Scholar 

  99. Bratov A, Muñoz J, Dominguez C, Bartrolí J. Photocurable polymers applied as encapsulating materials for ISFET production. Sensors and Actuators B: Chemical, 1995; 25 (1–3):823–825.

    Article  Google Scholar 

  100. Hammond PA, Cumming DRS. Encapsulation of a liquid-sensing microchip using SU-8 photoresist. Microelectronic Engineering, 2004:73–74:893–897.

    Article  Google Scholar 

  101. Tsukada K, Sebata M, Miyahara Y, Miyagi H. Long-life multiple-ISFETS with polymeric gates. Sensors and Actuators, 1989; 18 (3–4):329–336.

    Article  Google Scholar 

  102. Fleischer M, Ostrick B, Pohle R et al. Low-power gas sensors based on work-function measurement in low-cost hybrid flip–chip technology. Sensors and Actuators B: Chemical, 2001; 80 (3):169–173.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Wang, L., Cumming, D.R.S., Hammond, P.A., Cooper, J.M., Johannessen, E.A., Ivanov, K. (2014). Wireless Sensor Microsystem Design: A Practical Perspective. In: Yang, GZ. (eds) Body Sensor Networks. Springer, London. https://doi.org/10.1007/978-1-4471-6374-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6374-9_11

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6373-2

  • Online ISBN: 978-1-4471-6374-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics