Skip to main content

Context Aware Sensing

  • Chapter
  • First Online:
Body Sensor Networks

Abstract

In recent years, there have been considerable interests in context-aware sensing for pervasive computing. Context can be defined as “the circumstances in which an event occurs” and this concept has been successfully used in information processing for over 50 years, particularly for Natural Language Processing (NLP) and Human Computer Interaction (HCI). The popularity of the context-aware architectures is due to the increasingly ubiquitous nature of the sensors, as well as the diversity of the environment under which the sensed signals are collected. To understand the intrinsic characteristics of the sensed signals and determine how BSNs should react to different events, the contextual information is essential to the adaptation of the monitoring device so as to provide more intelligent support to the users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Want R, Hopper A. Active badges and personal interactive computing objects. IEEE Transactions on Consumer Electronics 1992; 38(1):10–20.

    Article  Google Scholar 

  2. Schilit B, Theimer M. Disseminating active map information to mobile hosts. IEEE Network 1994; 8(5):22–32.

    Article  Google Scholar 

  3. Schilit BN, Adams N, Gold R, Tso MM, Want R. The PARCTAB mobile computing system. In: Proceedings of the Fourth Workshop on Workstation Operating Systems 1993; 34–39.

    Google Scholar 

  4. Pascoe J. Adding generic contextual capabilities to wearable computers. In: Proceedings of the Second IEEE International Symposium on Wearable Computers 1998; 92–99.

    Google Scholar 

  5. Dey AK, Abowd G. Towards a better understanding of context and context-awareness. In: Proceedings of the CHI 2000 Workshop on “The What, Who, Where, When, and How of Context-Awareness” 2000.

    Google Scholar 

  6. Korkea-aho M, “Context-aware applications survey”, http://users.tkk.fi/~mkorkeaa/doc/context-aware.html, 2000.

  7. Abowd GD, Mynatt ED. Charting past, present, and future research in ubiquitous computing. ACM Transactions on Computer-Human Interaction 2000; 7(1):29–58.

    Article  Google Scholar 

  8. Bobick AF. Movement, activity and action: the role of knowledge in the perception of motion. Philosophical Transactions of the Royal Society of London B: Biological Sciences 1997; 352(1358):1257–1265.

    Article  Google Scholar 

  9. Brotherton JA, Abowd GD, Truong KN. Supporting capture and access interfaces for informal and opportunistic meetings. GVU Center, Georgia Institute of Technology, Technical Report, GIT-GVU-99-06, 1999.

    Google Scholar 

  10. Long S, Aust D, Abowd GD, Atkeson CG. Rapid prototyping of mobile context-aware applications: the Cyberguide case study. In: Proceedings of the Second ACM International Conference on Mobile Computing and Networking, NY, USA 1996; 97–107.

    Google Scholar 

  11. Lamming M, Flynn M. Forget-me-not: intimate computing in support of human memory. In: Proceedings of FRIEND21: International Symposium on Next Generation Human Interfaces, Meguro Gajoen, Japan, 1994; 125–128.

    Google Scholar 

  12. Rhodes BJ. The wearable remembrance agent: a system for augmented memory. In: Proceedings of the First International Symposium on Wearable Computers, Cambridge, MA, USA, 1997; 123–128.

    Google Scholar 

  13. Brown PJ, Bovey JD, Chen X. Context-aware applications: from the laboratory to the marketplace. IEEE Personal Communications 1997; 4(5):58–64.

    Article  Google Scholar 

  14. Want R, Hopper A, Falcao V, Gibbons J. The active badge location system. ACM Transactions on Information Systems 1992; 10(1):91–102.

    Article  Google Scholar 

  15. Van Someren EJ, Vonk BF, Thijssen WA, Speelman JD, Schuurman PR, Mirmiran M, et al. A new actigraph for long-term registration of the duration and intensity of tremor and movement. IEEE Transactions on Biomedical Engineering 1998; 45(3):386–395.

    Article  Google Scholar 

  16. Bhattacharya A, McCutcheon EP, Shvartz E, Greenleaf JE. Body acceleration distribution and O2 uptake in humans during running and jumping. Journal of Applied Physiology 1980; 49(5):881–887.

    Google Scholar 

  17. Tolkiehn M, Atallah L, Lo B, Yang G-Z. Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor. In: Proceedings of the Thirty-Third Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Boston, USA, 2011.

    Google Scholar 

  18. Asada HH, Jiang H-H, Gibbs P. Active noise cancellation using MEMS accelerometers for motion-tolerant wearable bio-sensors. In: Proceedings of the Twenty-Sixth Annual International Conference of Engineering in Medicine and Biology Society 2004; 1:2157–2160.

    Google Scholar 

  19. Bao L, Intille SS. Activity recognition from user-annotated acceleration data. In: Proceedings of the Second International Conference on Pervasive Computing, Vienna, Austria, 2004; 1–17.

    Google Scholar 

  20. Lee S-W, Mase K. Activity and location recognition using wearable sensors. IEEE Pervasive Computing 2002; 1(3):24–32.

    Article  Google Scholar 

  21. Thiemjarus S, Lo BPL, Yang GZ. Feature selection for wireless sensor networks. In: Proceedings of the First International Workshop on Wearable and Implantable Body Sensor Networks, Imperial College, London, 2004.

    Google Scholar 

  22. Thiemjarus S, Lo BPL, Yang GZ. A distributed Bayesian framework for body sensor networks. In: Proceedings of the Second International Workshop on Body Sensor Networks, Imperial College, London, 2005.

    Google Scholar 

  23. Thiemjarus S, Lo BPL, Yang GZ. A noise resilient distributed inference framework for body sensor networks. In: Proceedings of the Third International Conference on Pervasive Computing, Munich, Germany, 2005; 13–18.

    Google Scholar 

  24. Van Laerhoven K, Cakmakci O. What shall we teach our pants? In: Proceedings of the Fourth IEEE International Symposium on Wearable Computers 2000.

    Google Scholar 

  25. Krause A, Siewiorek DP, Smailagic A, Farringdon J. Unsupervised, dynamic identification of physiological and activity context in wearable computing. In: Proceedings of the Seventh IEEE International Symposium on Wearable Computers 2003; 88–97.

    Google Scholar 

  26. Mitchell E, Monaghan D, O’Connor NE. Classification of sport activities using smartphone accelerometers. Sensors 2013; 13(4):5317–5337.

    Article  Google Scholar 

  27. Choudhury T, Consolvo S, Harrison B, Hightower J, LaMarca A, LeGrand L, et al. The mobile sensing platform: an embedded activity recognition system. IEEE Pervasive Magazine – Special Issue on Activity-Based Computing 2008; 7(2):32–41.

    Article  Google Scholar 

  28. Inzitari D, Basile AM. Activities of daily living and global functioning. International Psychogeriatrics 2003; 15(Supplement 1):225–229

    Article  Google Scholar 

  29. Senanarong V, Harnphadungkit K, Prayoonwiwat N, Poungvarin N, Sivasariyanonds N, Printarakul T, et al. A new measurement of activities of daily living for Thai elderly with dementia. International Psychogeriatrics 2003; 15(2):135–148.

    Article  Google Scholar 

  30. Tognetti A, Lorussi F, Bartalesi R, Quaglini S, Tesconi M, Zupone G, et al. Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. Journal of NeuroEngineering and Rehabilitation 2005; 2(8):1–16.

    Google Scholar 

  31. Walker DJ, Heslop PS, Plummer CJ, Essex T, Chandler S. A continuous patient activity monitor: validation and relation to disability. Physiological Measurement 1997; 18(1):49–59.

    Article  Google Scholar 

  32. White R, Agouris I, Selbie RD, Kirkpatrick M. The variability of force platform data in normal and cerebral palsy gait. Clinical Biomechanics (Bristol, Avon) 1999; 14(3):185–192.

    Article  Google Scholar 

  33. Chang WN, Tsirikos AI, Miller F, Schuyler J, Glutting J. Impact of changing foot progression angle on foot pressure measurement in children with neuromuscular diseases. Gait Posture 2004; 20(1):14–19.

    Article  Google Scholar 

  34. Verghese J, Lipton RB, Hall CB, Kuslansky G, Katz MJ, Buschke H. Abnormality of gait as a predictor of non-Alzheimer’s dementia. The New England Journal of Medicine 2002; 347(22):1761–1768.

    Article  Google Scholar 

  35. Mueller MJ, Salsich GB, Bastian AJ. Differences in the gait characteristics of people with diabetes and transmetatarsal amputation compared with age-matched controls. Gait Posture 1998; 7(3):200–206.

    Article  Google Scholar 

  36. Zijlstra W, Rutgers AW, Van Weerden TW. Voluntary and involuntary adaptation of gait in Parkinson’s disease. Gait Posture 1998; 7(1):53–63.

    Article  Google Scholar 

  37. Dalto A, Patel S, Chowdhury AR, Welsh M, Pang T, Schachter S, et al. Development of a Body Sensor Network to detect motor patterns of epileptic seizures. IEEE Transactions of Information Technology in Biomedicine 2012; 59(11):3204–3211.

    Article  Google Scholar 

  38. Dahal N, Nandgopal N, Nafalski A, Z. N. Modeling of cognition using EEG: a review and a new approach. In: Proceedings of IEEE Region 10 Conference, Bali, Indonesia, 2011; 1045–1049.

    Google Scholar 

  39. Rodenbeck A, Binder R, Geisler P, Danker-Hopfe H, Lund R, Raschke F, et al. A review of sleep EEG patterns. part I: a compilation of amended rules for their visual recognition according to Rechtschaffen and Kales. Somnologie 2006; 10(4):159–175.

    Article  Google Scholar 

  40. Bulling A, Roggen D, Troster G. What’s in the eyes for context-awareness? Pervasive Computing 2011; 10(2):48–57.

    Article  Google Scholar 

  41. Thiemjarus S, James A, Yang G-Z. An eye hand data fusion framework for pervasive sensing of surgical activities Pattern Recognition 2012; 45(8):2855–2867.

    Article  Google Scholar 

  42. Chen J, Kam AH, Zhang J, Liu N, Shue L. Bathroom activity monitoring based on sound. In: Proceedings of the Third International Conference on Pervasive Computing, Munich, Germany, 2005; 47–61.

    Google Scholar 

  43. Teicher MH. Actigraphy and motion analysis: new tools for psychiatry. Harvard Review of Psychiatry 1995; 3(1):18–35.

    Article  Google Scholar 

  44. Myrtek M, Brugner G. Perception of emotions in everyday life: studies with patients and normals. Biological Psychology 1996; 42(1–2):147–164.

    Article  Google Scholar 

  45. Picard RW, Vyzas E, Healey J. Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 2001; 23(10):1175–1191.

    Article  Google Scholar 

  46. Poh MZ, Swenson NC, Picard RW. A wearable sensor for unobtrusive, long-term assessment of electrodermal activity. IEEE Transactions on Biomedical Engineering 2010; 57(5):1243–1252

    Article  Google Scholar 

  47. Benditt DG, Milstein S, Buetikofer J, Gornick CC, Mianulli M, Fetter J. Sensor-triggered, rate-variable cardiac pacing: current technologies and clinical implications. Annals of Internal Medicine 1987; 107(5):714–724.

    Article  Google Scholar 

  48. Bardram JE. Applications of context-aware computing in hospital work: examples and design principles. In: Proceedings of the 2004 ACM Symposium on Applied Computing, Nicosia, Cyprus, 2004; 1574–1579.

    Google Scholar 

  49. Golding AR, Lesh N. Indoor navigation using a diverse set of cheap, wearable sensors. In: Proceedings of the Third IEEE International Symposium on Wearable Computers 1999; 29–36.

    Google Scholar 

  50. Wilson D, Atkeson C. The Narrator: a daily activity summarizer using simple sensors in an instrumented environment. In: Proceedings of the Fifth International Conference on Ubiquitous Computing, Seattle, Washington, 2003.

    Google Scholar 

  51. Patawari N, Arbor A, Ash JN, Kyperountas S, Hero AO. Locating the nodes: cooperative localization in wireless sensor networks IEEE Signal Processing Magazine 2005; 22(4):54–69.

    Article  Google Scholar 

  52. Wymeersch H, Lien J, Win MZ. Cooperative localization in wireless networks. Proceedings of the IEEE 2009; 97(2):427–250.

    Article  Google Scholar 

  53. Steele BG, Belza B, Cain K, Warms C, Coppersmith J, Howard J. Bodies in motion: monitoring daily activity and exercise with motion sensors in people with chronic pulmonary disease. Journal of Rehabilitation Research and Development 2003; 40(5):45–58.

    Article  Google Scholar 

  54. Lukowicz P, Junker H, Troster G. Automatic calibration of body worn acceleration sensors. In: Proceedings of the Second International Conference on Pervasive Computing, Linz/Vienna, Austria, 2004; 176–181.

    Google Scholar 

  55. Thiemjarus S. A device-orientation independent method for activity recognition. In: Proceedings of the International Conference on Wearable and Implantable Body Sensor Networks, Biopolis, Singapore, 2010; 19–23.

    Google Scholar 

  56. Henpraserttae A, Thiemjarus S, Marukatat S. Accurate activity recognition using a mobile phone regardless of device orientation and location. In: Proceedings of the International Conference on Wearable and Implantable Body Sensor Networks, Dallas, TX, USA, 2011.

    Google Scholar 

  57. Thiemjarus S, Henpraserttae A, Marukatat S. A study on instance-based learning with reduced training prototypes for device-context-independent activity recognition on a mobile phone In: Proceedings of the Ninth International Conference on Wearable and Implantable Body Sensor Networks, MA, USA, 2013.

    Google Scholar 

  58. Lo B, Thiemjarus S, Panousopoulou A, Yang G-Z. Bioinspired design for body sensor networks. IEEE Signal Processing Magazine 2013; 30(1):165–170.

    Article  Google Scholar 

  59. Figo D, Diniz PC, Ferrerira DR, Cardoso JMP. Preprocessing technique for context recognition from accelerometer data. Personal and Ubiquitous Computing 2010; 14(7):645–662.

    Article  Google Scholar 

  60. Van Laerhoven K, Kern N, Gellersen HW, Schiele B. Towards a wearable inertial sensor network. In: Proceedings of IEE Eurowearable 2003; 125–130.

    Google Scholar 

  61. Van Laerhoven K, Gellersen H-W. Spine versus porcupine: a study in distributed wearable activity recognition. In: Proceedings of the Eighth International Symposium on Wearable Computers 2004; 1:142–149.

    Google Scholar 

  62. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P. Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Transactions on Biomedical Engineering 2003; 50(6):711–723.

    Article  Google Scholar 

  63. Loosli G, Lee SG, Canu S. Context changes detection by one-class SVMs. In: Proceedings of Workshop on Machine Learning for User Modeling: Challenges, the Tenth International Conference on User Modelling, Edinburgh, Scotland, 2005.

    Google Scholar 

  64. Basseville M, Nikiforov IV. Detection of abrupt changes – theory and application. Prentice-Hall, 1993.

    Google Scholar 

  65. Ravi N, Dandekar N, Mysore P, Littman ML. Activity recognition from accelerometer data. In: Proceedings of the Seventeenth Annual Conference on Innovative Applications of Artificial 2005.

    Google Scholar 

  66. Noguchi K, Somwong P, Matsubara T, Nakauchi Y. Human intention detection and activity support system for ubiquitous autonomy. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation 2003; 2:906–911.

    Google Scholar 

  67. Patterson D, Fox D, Kautz H, Philipose M. Expressive, tractable and scalable techniques for modeling activities of daily living. In: Proceedings of the Second International Workshop on Ubiquitous Computing for Pervasive Healthcare Applications, Seattle, Washington, USA, 2003.

    Google Scholar 

  68. Barger TS, Brown DE, Alwan M. Health-status monitoring through analysis of behavioral patterns. IEEE Transactions on Systems, Man and Cybernetics: Part A 2005; 35(1):22–27.

    Article  Google Scholar 

  69. Tapia EM, Intille SS, Larson K. Activity recognition in the home setting using simple and ubiquitous sensors. In: Proceedings of the Second International Conference on Pervasive Computing 2004; Springer LNCS 3001:158–175.

    Google Scholar 

  70. Chambers G, Venkatesh S, West G, Bui H. Hierarchical recognition of intentional human gestures for sports video annotation. In: Proceedings of the Sixteenth IEEE Conference on Pattern Recognition 2002; 6.

    Google Scholar 

  71. Philipose M, Fishkin KP, Perkowitz M, Patterson DJ, Fox D, Kautz H, et al. Inferring activities from interactions with objects. IEEE Pervasive Computing 2004; 3(4):50–57.

    Article  Google Scholar 

  72. Tanyawiwat N, Thiemjarus S. Design of an assistive communication glove using combined sensory channels. In: Proceedings of the International Conference on Wearable and Implantable Body Sensor Networks, London, UK, 2012.

    Google Scholar 

  73. Sazonov ES, Fontana JM. A sensor system for automatic detection of food intake through non-invasive monitoring of chewing. IEEE Sensors Journal 2012; 12(5):1340–1348.

    Article  Google Scholar 

  74. Huo X, Ghovanloo M. A wireless pharmaceutical compliance monitoring system based on magneto-inductive sensors. IEEE Sensors Journal 2007; 7(12):1711–1719.

    Article  Google Scholar 

  75. Patel S, Lorincz K, Hughes R, Huggins N, Growdon J, Standaert D, et al. Monitoring motor fluctuations in patients with Parkinson’s disease using wearable sensors. IEEE Transactions on Information Technology in Biomedicine 2009; 13(6):864–872.

    Article  Google Scholar 

  76. Ghasemzadeh H, Jafari R, Prabhakaran B. A body sensor network with electromyogram and inertial sensors: multimodal interpretation of muscular activities. IEEE Transactions on Information Technology in Biomedicine 2010; 14:198–206.

    Article  Google Scholar 

  77. Bourke AK, Lyons GM. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Medical Engineering and Physics 2008; 30:84–90.

    Article  Google Scholar 

  78. Dadashi F, Arami A, Crettenand F, Millet GP, Komar J, Seifert L, et al. A hidden Markov model of the breaststroke swimming temporal phases using wearable inertial measurement units In: Proceedings of the Tenth International Conference on Wearable and Implantable Body Sensor Networks, MIT, Cambridge, USA, 2013.

    Google Scholar 

  79. King R, Atallah L, Lo B, Yang GZ. Development of a wireless sensor glove for surgical skills assessment. IEEE Transactions of Information Technology in Biomedicine 2009; 13(5):673–679.

    Article  Google Scholar 

  80. Pradhan G, Prabhakaran B, Li C. Hand-gesture computing for the hearing and speech impaired. IEEE Multimedia 2008; 15(2):20–27.

    Article  Google Scholar 

  81. Haykin S. Neural networks: a comprehensive foundation, 2nd ed. Upper Saddle River, New Jersey: Prentice Hall, 1994.

    MATH  Google Scholar 

  82. Macq D, Verleysen M, Jespers P, Legat J-D. Analog implementation of a Kohonen map with on-chip learning. IEEE Transactions on Neural Networks 1993; 4(3):456–461.

    Article  Google Scholar 

  83. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin Mathematical Biophysics 1943; 5:115–133.

    Article  MATH  MathSciNet  Google Scholar 

  84. Hebb DO. The organization of behavior. New York: John Wiley and Sons, 1949.

    Google Scholar 

  85. Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review 1958; 65(6):386–408.

    Article  MathSciNet  Google Scholar 

  86. Minsky ML, Papert S. Perceptrons; an introduction to computational geometry. MIT Press, Cambridge, Massachusetts: MIT Press, 1969.

    Google Scholar 

  87. Mehrotra K, Mohan CK, Ranka S. Elements of artificial neural networks. Cambridge, Massachusetts: MIT Press, 1997.

    Google Scholar 

  88. Kohonen T. The self-organizing map. Proceedings of the IEEE 1990; 78(9):1464–1480.

    Article  Google Scholar 

  89. Attallah L, Wiik A, Jones GG, Lo B, Cobb J, Amis A, et al. Validation of an ear-worn sensor for gait monitoring using a force-plate instrumented treadmill. Gait and Posture 2011; 35(4):674–676.

    Article  Google Scholar 

  90. Himberg J, Flanagan JA, Mäntyjärvi J. Towards context awareness using symbol clustering map. In: Proceedings of the Workshop for Self-Organizing Maps, Kitakyushu, Japan, 2003; 249–254.

    Google Scholar 

  91. Varsta M, Heikkonen J, Millan JdR. Context learning with the self-organizing map. In: Proceedings of the Workshop on Self-Organizing Maps, Helsinki University of Technology, Finland, 1997.

    Google Scholar 

  92. Van Laerhoven K. Combining the self-organizing map and k-means clustering or on-line classification of sensor data. In: Proceedings of the International Conference on Artificial Neural Networks 2001; 464–469.

    Google Scholar 

  93. Barreto G, Araujo A, Ritter H. Time in self-organizing maps: an overview of models. International Journal of Computer Research, Special Issue on Neural Networks: Past, Present and Future 2001; 10(2):139–179.

    Google Scholar 

  94. Yin H, Allinson NM. Towards the optimal Bayes classifier using an extended self-organising map. In: Proceedings of the International Conference on Artificial Neural Networks 1995; 2:45–49.

    Google Scholar 

  95. Thiemjarus S, Lo BPL, Yang G-Z. A spatio-temporal architecture for context-aware sensing. In: Proceedings of the Third International Workshop on Wearable and Implantable Body Sensor Networks, MIT Media Lab, 2006; 191–194.

    Google Scholar 

  96. Baum LE, Pertrie T, Soules G, Weiss N. A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics 1970; 41:164–171.

    Article  MATH  MathSciNet  Google Scholar 

  97. Rabiner L. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 1989; 77.

    Google Scholar 

  98. Gold B, Morgan N. Speech and audio signal processing: processing and perception of speech and music. New York: John Wiley and Sons, 2000.

    Google Scholar 

  99. King R, Lo BPL, Yang GZ. Hand gesture recognition with body sensor networks. In: Proceedings of the Second International Workshop on Body Sensor Networks, Imperial College, London, 2005.

    Google Scholar 

  100. Young SJ, Rusell NH, Thornton JHS. Token passing: a conceptual model for connected speech recognition. Cambridge University Engineering Department, Technical Report, CUED/F-INFENG/TR38, 1989.

    Google Scholar 

  101. Kschischang FR, Frey BJ, Loeliger H-A. Factor graphs and the sum-product algorithm. IEEE Transactions on Information Theory, Special Issue on Codes on Graphs and Iterative Algorithms 2001; 47(2):498–519.

    Article  MATH  MathSciNet  Google Scholar 

  102. Tanner RM. A recursive approach to low complexity codes. IEEE Transactions on Information Theory 1981; 27(5):533–547.

    Article  MATH  MathSciNet  Google Scholar 

  103. Wiberg N, Loeliger H-A, Kotter R. Codes and iterative decoding on general graphs: iterative and turbo decoding. European Transactions on Telecommunications and Related Technologies 1995; 6:513–525.

    Article  Google Scholar 

  104. Chu M, Mitter SK, Zhao F. An information architecture for distributed inference on ad hoc sensor networks. In: Proceedings of the Forty-First Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 2003.

    Google Scholar 

  105. Cooper GF. NESTOR: A computer-based medical diagnostic that integrates causal and probabilistic knowledge. Stanford University, Stanford, California, PhD thesis 1984.

    Google Scholar 

  106. Breiman L, Friedman JH, Olshen RA, Stone CJ. Classification and regression trees. Belmont, California: Wadsworth International Group, 1984.

    MATH  Google Scholar 

  107. Quinlan JR. C4.5: Programs for machine learning. San Mateo, California: Morgan Kaufmann Publishers, 1993.

    Google Scholar 

  108. Vapnik V. The nature of statistical learning theory. Berlin: Springer-Verlag, 1995.

    Book  MATH  Google Scholar 

  109. Cristianini N, Shawe-Taylor J. An introduction to support vector machines. Cambridge: University Press, 2000.

    Google Scholar 

  110. Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995; 20(3):273–297.

    MATH  Google Scholar 

  111. Huynh T, Schiele B. Towards less supervision in activity recognition from wearable sensors. In: Proceedings of the Tenth IEEE International Symposium on Wearable Computing, Montreux, Switzerland, 2006.

    Google Scholar 

  112. Min J-K, Cho S-B. Semantic management of multiple contexts in a pervasive computing framework. Expert Systems with Applications 2012; 39:8655–8664.

    Article  Google Scholar 

  113. Tanantong T, Nantajeewarawat E, Thiemjarus S. Towards ECG healthcare monitoring through body sensor networks using an arrhythmia indicator ontology. In: Proceedings of the Sixth International Conference on Knowledge, Information and Creativity Support Systems, Beijing, China, 2011.

    Google Scholar 

  114. Ye J, Dobson S, McKeever S. Situation identification techniques in pervasive computing. Personal and Ubiquitous Computing 2012; 8(1):36–66.

    Google Scholar 

  115. Atallah L, ElHelw MA, Pansiot J, Stoyanov D, Wang L, Lo BPL, et al. Behaviour profiling with ambient and wearable sensing. In: Proceedings of the International Workshop on Wearable and Implantable Body Sensor Networks, Aachen, Germany, 2007; 133–138.

    Google Scholar 

  116. Atallah L, Yang GZ. The use of pervasive sensing for behaviour profiling – survey. Pervasive and Mobile Computing 2009; 5:449–464.

    Article  Google Scholar 

  117. Dawkins R. The selfish gene. Oxford University Press, 1989.

    Google Scholar 

  118. Glodek M, Bigalke L, Schels M, Schwenker F. Incorporating uncertainty in a layered HMM architecture for human activity recognition. In: Proceedings of the Joint ACM Workshop on Human Gesture and Behavior Understanding, Scottsdale, Arizona, USA, 2011; 33–34.

    Google Scholar 

  119. Chen C, Liang J, Zhao H, Hu H, Tian J. Factorial HMM and parallel HMM for gait recognition IEEE Transactions on Systems, Man, and Cybernetics 2009; 39(1):114–123.

    Article  Google Scholar 

  120. Bui HH, Venkatesh S, West G. Policy recognition in the abstract hidden Markov model. International Journal of Artificial Life Research 2002; 17(1):451–499.

    MATH  MathSciNet  Google Scholar 

  121. Duong TV, Bui HH, Phung DQ, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CA, USA, 2005; 838–845.

    Google Scholar 

  122. Brand M, Oliver N, Pentland A. Coupled hidden Markov models for complex action recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, 1997; 994–999

    Google Scholar 

  123. Oliver N, Rosario B, Pentland A. A Bayesian computer vision system for modeling human. IEEE Transactions on Pattern Analysis and Machine Intelligence 2000; 22(8):831–843.

    Article  Google Scholar 

  124. Natarajan P, Nevatia R. Coupled hidden semi Markov models for activity recognition. In: Proceedings of the IEEE Workshop on Motion and Video Computing, Texas, USA, 2007.

    Google Scholar 

  125. Han J, Cheng H, Xin D, Yan X. Frequent pattern mining: current status and future directions. Data Mining and Knowledge Discovery 2007; 15(1):55–86.

    Article  MathSciNet  Google Scholar 

  126. Luhr S, West G, Venkatesh S. Recognition of emergent human behaviour in a smart home: a data mining approach. Pervasive Mobile Computing 2007; 3(2):95–116.

    Article  Google Scholar 

  127. Ali R, ElHelw M, Atallah L, Lo B, Yang GZ. Pattern mining for routine behaviour discovery in pervasive healthcare environments. In: Proceedings of the International Conference on Information Technology and Applications in Biomedicine, Shenzhen, China, 2008; 241–244.

    Google Scholar 

  128. Virone G, Noury N, Demongeot J. A system for automatic measurement of circadian activity deviations in telemedicine. Transactions on Biomedical Engineering 2002; 49(12):1463–1469.

    Article  Google Scholar 

  129. Li YY, Parker LE. Detecting and monitoring time-related abnormal events using a wireless sensor network and mobile robot. In: Proceedings of the International Conference on Intelligent Robots and Systems, Nice, France, 2008; 3292–3298.

    Google Scholar 

  130. Mori T, Urushibata R, Shimosaka M, Noguchi H, Sato T. Anomaly detection algorithm based on life pattern extraction from accumulated pyroelectric sensor data. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 2008; 2545–2552.

    Google Scholar 

  131. Nanami R, Kawahawa Y, Asami T. A calorie count application for a mobile phone based on METS value. In: Proceedings of the IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, San Francisco, CA, USA, 2008; 583–584.

    Google Scholar 

  132. Ali R, Lo B, Guang-Zhong Y. Unsupervised routine profiling in free-living conditions – can smartphone apps provide insights? In: Proceedings of the Tenth International Workshop on Wearable and Implantable Body Sensor Networks, MIT, Cambridge, USA, 2013.

    Google Scholar 

  133. Eagle N, Pentland A. Eigenbehaviors: identifying structure in routine. Behavioral Ecology and Sociobiology 2009; 63(7):1057–1066.

    Article  Google Scholar 

  134. Dawson D, Hendershot G, Fulton J. Aging in the eighties: The prevalence of comorbidity and its association with disability. National Center for Health Statistics, Hyattsville, MD, 1987.

    Google Scholar 

  135. Britton E, Harris N, Turton A. An exploratory randomized controlled trial of assisted practice for improving sit-to-stand in stroke patients in the hospital setting. Clinical Rehabilitation 2008; 22(5):458–468.

    Article  Google Scholar 

  136. Dall PM, Kerr A. Frequency of the sit to stand task: An observational study of free-living adults. Applied Ergonomics 2010; 41(1):58–61.

    Article  Google Scholar 

  137. Janssen W, Bussmann J, Selles R, Koudstaal P, Ribbers G, Stam H. Recovery of the sit-to-stand movement after stroke: a longitudinal cohort study. Neurorehabilitation and Neural Repair 2010; 24(8):763–769.

    Article  Google Scholar 

  138. Topper AK, Maki BE, Holliday PJ. Are activity-based assessments of balance and gait in the elderly predictive of risk of falling and/or type of fall? Journal of the American Geriatrics Society 1993; 41(5):479–487.

    Google Scholar 

  139. Cheng PT, Liaw MY, Wong MK, Tang FT, Lee MY, Lin PS. The sit-to-stand movement in stroke patients and its correlation with falling. Archives of Physical Medicine and Rehabilitation 1998; 79(9):1043–1046.

    Article  Google Scholar 

  140. Janssen WGM, “The sit-to-stand movement recovery after stroke and objective assessment”, Erasmus University Rotterdam, http://hdl.handle.net/1765/13555, 2008.

  141. Frykberg GE, Åberg AC, Halvorsen K, Borg J, Hirschfeld H. Temporal coordination of the sit-to-walk task in subjects with stroke and in controls. Archives of Physical Medicine and Rehabilitation 2009; 90(6):1009–1017.

    Article  Google Scholar 

  142. Nitz JC, Burns YR, Jackson RV. Sit-to-stand and walking ability in patients with neuromuscular conditions. Physiotherapy 1997; 83(5):223–227.

    Article  Google Scholar 

  143. Galli M, Crivellini M, Sibella F, Montesano A, Bertocco P, Parisio C. Sit-to-stand movement analysis in obese subjects. International Journal of Obesity and Related Metabolic Disorders 2000; 24(11):1488–1492.

    Article  Google Scholar 

  144. Allin S, Mihailidis A. Automated sit-to-stand detection and analysis. In: Proceedings of Symposium on AI in Eldercare: New Solutions to Old Problems, Arlington, Virginia, 2008.

    Google Scholar 

  145. Najafi B, Aminian K, Loew F, Blanc Y, Robert PA. Measurement of stand-sit and sit-stand transitions using a miniature gyroscope and its application in fall risk evaluation in the elderly. IEEE Transactions on Biomedical Engineering 2002; 49(8):843–851.

    Article  Google Scholar 

  146. Ali R, Atallah L, Lo B, Yang G-Z. Detection and analysis of transitional activity in manifold space. IEEE Transactions on Information Technology in Biomedicine 2012; 16(1):119–128.

    Article  Google Scholar 

  147. Ali R. Behavior profiling using wearable sensors for pervasive healthcare. Imperial College London, PhD Thesis, 2012.

    Google Scholar 

  148. Liao L, Fox D, Kautz H. Extracting places and activities from GPS traces using hierarchical conditional random fields. The International Journal of Robotics Research 2007; 26(1):119–134.

    Article  Google Scholar 

  149. Hu DH, Yang Q. CIGAR: concurrent and interleaving goal and activity recognition. In: Proceedings of the Twenty-Third Conference on Artificial Intelligence Chicago, Illinois, USA, 2008; 3:1363–1368.

    Google Scholar 

  150. Riboni D, Bettini C. COSAR: hybrid reasoning for context-aware activity recognition. Personal and Ubiquitous Computing 2011; 5:271–289.

    Article  Google Scholar 

  151. Helaoui R, Niepert M, Stuckenschmidt H. Recognizing interleaved and concurrent activities: a statistical-relational approach. In: Proceedings of the International Conference on Pervasive Computing and Communications Seattle, WA, USA, 2011; 1–9.

    Google Scholar 

  152. Theekakul P, Thiemjarus S, Nantajeewarawat E. A hybrid framework for real-time continuous monitoring with body sensor networks. International Journal of Innovative Computing Information and Control (IJICIC) 2013; 8(6):2377–2392.

    Google Scholar 

  153. Tsoumakas G, Katakis I, Vlahavas I. Mining multi-label data, 2nd ed. Data Mining and Knowledge Discovery Handbook, Springer, 2010.

    Google Scholar 

  154. Thiemjarus S, Yang G-Z. An autonomic sensing framework for body sensor networks. In: Proceedings of the Second International Conference on Body Area Networks, Florence, Italy, 2007.

    Google Scholar 

  155. Thiemjarus S. A framework for contextual data fusion in Body Sensor Networks. Imperial College London, PhD Thesis, 2007.

    Google Scholar 

  156. Liu J, Johns E, Attallah L, Pettitt C, Lo B, Frost G, et al. An intelligent food-intake monitoring system using wearable sensors. In: Proceedings of the Ninth International Conference on Wearable and Implantable Body Sensor Networks, London, UK, 2012; 154–160

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Jindong Liu and Mr. Krittameth Teachasrisakul for their assistance in data collection, audio feature extraction and sensor data analysis for the parallel activity experiment in Sect. 9.5.4. We also thank Dr Raza Ali for his contribution to the contents of Sect. 9.5 on behaviour profiling and transient activity recognition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Zhong Yang PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Thiemjarus, S., Yang, GZ. (2014). Context Aware Sensing. In: Yang, GZ. (eds) Body Sensor Networks. Springer, London. https://doi.org/10.1007/978-1-4471-6374-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6374-9_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6373-2

  • Online ISBN: 978-1-4471-6374-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics