Skip to main content

Dynamic Combination of Movement and Force for Softness Discrimination

  • Chapter
  • First Online:
Multisensory Softness

Part of the book series: Springer Series on Touch and Haptic Systems ((SSTHS))

  • 1078 Accesses

Abstract

Softness is an important source of information when interacting with real, remote, or virtual environments (VE) via a haptic human-machine-interface. Humans have no dedicated sense for perceiving softness; instead, inferring an object’s compliance haptically requires the combination of movement and force cues. A telepresence or VE system can alter an object’s mechanical impedance by artefacts such as time delay in the communication channel. Determining the limits for distortions caused by the technical system that do not affect the operator’s softness percept is crucial to ensure a realistic interaction experience. Characterising the perceptual system with a single performance measure such as the just noticeable difference (JND) neglects the role of active movement, which is known to influence perceptual performance. Overcoming this drawback, we propose the usage of dynamic models for haptic perception. On the example of an interaction with a soft virtual environment with time delay in the force feedback, we compare the prediction accuracy of different softness perception model candidates. Experimental data from three psychophysical experiments indicates that a dynamic state observer model captures the perceptual characteristics better than a time delay JND measure and an predictor base on an inverse model representation of the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ando N, Korondi P, Hashimoto H (2001) Development of micromanipulator and haptic interface for networked micromanipulation. IEEE/ASME Trans Mechatron 6(4):417–427

    Article  Google Scholar 

  • Åström KJ, Eykhoff P (1971) System identification—a survey. Automatica 7:123–162

    Article  MATH  Google Scholar 

  • Baud-Bovy G, Scocchia L (2009) Is mass invariant? effects of movement amplitude and duration. In: Proceedings of the 25th meeting of the international society for psychophysics, fechner day

    Google Scholar 

  • Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-scale nonlinear programming. SIAM J Optim 9(4):877–900

    Article  MATH  MathSciNet  Google Scholar 

  • De Gersem G (2005) Reliable and enhanced stiffness perception in soft-tissue telemanipulation. Int J Rob Res 24(10):805–822

    Article  Google Scholar 

  • Fujisaki W, Nishida S (2005) Temporal frequency characteristics of synchrony-asynchrony discrimination of audio-visual signals. Exp Brain Res 166(3–4):455–464

    Article  Google Scholar 

  • Gescheider GA (1985) Psychophysics: method, theory, and application. Lawrence Erlbaum

    Google Scholar 

  • Gil JJ, Avello A, Rubio A, Florez J (2004) Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion. IEEE Trans Control Syst Technol 12(4):583–588

    Article  Google Scholar 

  • Grondin S (2010) Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Attention Percept Psychophysics 72(3):561–582

    Article  Google Scholar 

  • Hale KS, Stanney KM (2004) Haptic rendering—beyond visual computing. IEEE Comput Graph Appl 24(2):33–39

    Article  Google Scholar 

  • Hirche S, Buss M (2007) Human perceived transparency with time delay. Adv Telerobotics 31:191–209

    Article  Google Scholar 

  • Hirche S, Buss M (2012) Human-oriented control for haptic teleoperation. Proc IEEE 100(3):623–647

    Article  Google Scholar 

  • Hirche S, Bauer A, Buss M (2005) Transparency of haptic telepresence systems with constant time delay. In: Proceedings of the 2005 IEEE conference on control applications, pp 328–333

    Google Scholar 

  • Jones LA, Hunter IW (1990) A perceptual analysis of stiffness. Exp Brain Res 79(1):150–156

    Article  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opinion Neurobiol 9(6):718–727

    Article  Google Scholar 

  • Kuo AD (1995) An optimal control model for analyzing human postural balance. IEEE Trans Bio-Med Eng 42(1):87–101

    Article  Google Scholar 

  • Lawrence DA, Pao LY, Dougherty AM, Salada MA, Pavlou Y (2000) Rate-hardness: a new performance metric for haptic interfaces. IEEE Trans Robot Autom 16(4):357–371

    Article  Google Scholar 

  • Leib R, Nisky I, Karniel A (2010) Perception of stiffness during interaction with delay-like nonlinear force field. In: Proceedings of the EuroHaptics conference 2010. Lecture notes in computer science, vol 6191, pp 87–92

    Google Scholar 

  • Ljung L (1999) System identification, 2nd edn. PTR Prentice Hall, Upper Saddle River

    Google Scholar 

  • Macmillan NA, Creelman CD (2005) Detection theory: a user’s guide. Lawrence Erlbaum

    Google Scholar 

  • Niebur E, Koch C (1994) A model for the neuronal implementation of selective visual attention based on temporal correlation among neurons. J Comput Neurosci 1(1–2):141–158

    Article  Google Scholar 

  • Nisky I, Mussa-Ivaldi FA, Karniel A (2008) A regression and boundary-crossing-based model for the perception of delayed stiffness. IEEE Trans Haptics 1(2):73–82

    Article  Google Scholar 

  • Ohnishi H, Mochizuki K (2007) Effect of delay of feedback force on perception of elastic force: a psychophysical approach. IEICE Trans Commun E90-B(1):12–20

    Google Scholar 

  • Peer A, Hirche S, Weber C, Krause I, Buss M, Miossec S et al (2008) Intercontinental multimodal tele-cooperation using a humanoid robot. In: Proceedings of the 2008 IEEE/RSJ international conference on intelligent robots and systems, pp 405–411

    Google Scholar 

  • Pleskac TJ, Busemeyer JR (2010) Two-stage dynamic signal detection: a theory of choice, decision time, and confidence. Psychol Rev 117(3):864–901

    Article  Google Scholar 

  • Pressman A, Welty LJ, Karniel A, Mussa-Ivaldi FA (2007) Perception of delayed stiffness. Int J Robotics Res 26(11–12):1191–1203

    Article  Google Scholar 

  • Rank M, Schauß T, Peer A, Hirche S, Klatzky RL (2012) Masking effects for damping JND. In: Proceedings of the EuroHaptics conference 2012. Lecture notes in computer science, pp 145–150

    Google Scholar 

  • Rank M, Shi Z, Müller S, Hirche H (2010) Perception of delay in haptic telepresence systems. Presence: Teleoperators Virtual Environ 19(5):389–399

    Google Scholar 

  • Rank M, Shi Z, Müller H, Hirche S (2010) The influence of different haptic environments on time delay discrimination in force feedback. In: Proceedings of the EuroHaptics conference 2010. Lecture notes in computer science, vol 6191, pp 205–212

    Google Scholar 

  • Ratcliff R (1978) A theory of memory retrieval. Psychol Rev 85:59–108

    Article  Google Scholar 

  • Sheridan TB (1993) Space teleoperation through time delay: review and prognosis. IEEE Trans Robot Autom 9(5):592–606

    Article  Google Scholar 

  • Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse-dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365(6441):50–52

    Article  Google Scholar 

  • Szirtes G, Póczos B, Lrincz A (2005) Neural kalman filter. Neurocomputing 65–66:349–355

    Article  Google Scholar 

  • Tan HZ, Srinivasan MA, Eberman B, Cheng B (1994) Human factors for the design of force-reflecting Haptic interfaces. Dynamic Syst Control 55(1):353–359

    Google Scholar 

  • Tan HZ, Durlach NI, Beauregard GL, Srinivasan MA (1995) Manual discrimination of compliance using active pinch grasp: the roles of force and work cues. Percept Psychophysics 57(4):495–510

    Article  Google Scholar 

  • van Beers RJ, Sittig AC, Gon JJ (1999) Integration of proprioceptive and visual position-ianformation: an experimentally supported model. J Neurophysiol 81(3):1355–1364

    Google Scholar 

  • Weber EH (1834) Die Lehre vom Tastsinne und Gemeingefühle auf Versuche Gegründet. Friedrich Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Yokokohji Y, Yoshikawa T (1994) Bilateral control of master-slave manipulators for ideal kinesthetic coupling—formulation and experiment. IEEE Trans Robotics Autom 10(5):605–620

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from the German Research Foundation (DFG) within the Collaborative Research Centre SFB 453 on “High-Fidelity Telepresence and Teleaction”. M. Rank is supported by a fellowship within the Postdoc-Programme of the German academic exchange service (DAAD) and the FP7 ICT grant no. 287888 http://www.coglaboration.eu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Rank, M., Hirche, S. (2014). Dynamic Combination of Movement and Force for Softness Discrimination. In: Di Luca, M. (eds) Multisensory Softness. Springer Series on Touch and Haptic Systems. Springer, London. https://doi.org/10.1007/978-1-4471-6533-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6533-0_8

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6532-3

  • Online ISBN: 978-1-4471-6533-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics