Skip to main content

Resistive Fuses: Analog Hardware for Detecting Discontinuities in Early Vision

  • Chapter
Book cover Analog VLSI Implementation of Neural Systems

Part of the book series: The Kluwer International Series in Engineering and Computer Science ((SECS,volume 80))

Abstract

The detection of discontinuities in motion, intensity, color, and depth is a well studied but difficult problem in computer vision. We discuss our “resistive fuse” circuit—the first hardware circuit that explicitly implements either analog or binary line processes in a controlled fashion. We have successfully designed and tested an analog CMOS VLSI circuit that contains a 1-D resistive network of fuses implementing piece-wise smooth surface interpolation. The segmentation ability of this network is demonstrated for a noisy step-edge input.

We derive the specific current-voltage relationship of the resistive fuse from a number of computational considerations, closely related to the early vision algorithms of Koch, Marroquin and Yuille (1986) and Blake and Zisserman (1987). We discuss the circuit implementation and the performance of the chip. In the last section, we show that a model of our resistive network—in which the resistive fuses have no internal dynamics—has an associated Lyapunov function, the co-content. The network will thus converge, without oscillations, to a stable solution, even in the presence of arbitrary parasitic capacitances throughout the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birkhoff, G. and Diaz, J. B. (1956). Nonlinear network problems. Quart. Appl. Math. 13:431–443.

    MathSciNet  MATH  Google Scholar 

  • Blake, A. (1989). Comparison of the efficiency of deterministic and stochastic algorithms for visual reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 11:2–12.

    Article  MATH  Google Scholar 

  • Blake, A. and Zisserman, A. (1987). Visual Reconstruction. Cambridge, MA: MIT Press.

    Google Scholar 

  • Brayton, R. K. and Moser, J. K. (1964). A theory of nonlinear networks—I, II. Quart. Appl. Math. 22(1):1–33 (April)

    MathSciNet  Google Scholar 

  • Brayton, R. K. and Moser, J. K. (1964). A theory of nonlinear networks—I, II. Quart. Appl. Math. 22(2):81–104 (July).

    MathSciNet  Google Scholar 

  • Chua, L. O., Desoer, C. A., and Kuh, E. S. (1987). Linear and Nonlinear Circuits. New York: McGraw-Hill, pp. 23–34.

    MATH  Google Scholar 

  • Duffin, R. J. (1947). Nonlinear networks IIa. Bull. Amer. Math. Soc. 53:963–971.

    Article  MathSciNet  MATH  Google Scholar 

  • Geman, S. and Geman, D. (1984). Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6:721–741.

    Article  MATH  Google Scholar 

  • Grimson, W. E. L. (1981). From Images to Surfaces. Cambridge, MA: MIT Press.

    Google Scholar 

  • Harris, J. G. (1989). An analog VLSI chip for thin plate surface interpolation. In Neural Information Processing Systems, ed. D. Touretzky. Palo Alto: Morgan Kaufmann.

    Google Scholar 

  • Harris, J. G. and Koch, C. (1989). Resistive fuses: circuit implementations of line discontinuities in vision. Snowbird Neural Network Workshop, April 4–7.

    Google Scholar 

  • Harris, J. G., Koch, C., Staats, E., Luo, J. and Wyatt, J. (1989). Analog hardware for detecting discontinuities in early vision: computational justification and VLSI circuits, in preparation.

    Google Scholar 

  • Hasler, M. and Neirynck, J., (1986). Nonlinear Circuits. Norwood, MA: Artech House Inc., pp. 172–173.

    Google Scholar 

  • Hildreth, E. C. (1984). The Measurement of Visual Motion. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hopfield, J. J. and Tank, D. W. (1985). Neural computation in optimization problems. Biol. Cybern. 52:141–152.

    MathSciNet  MATH  Google Scholar 

  • Horn, B. K. P. (1989). Parallel networks for machine vision. Artif. Intell. Lab. Memo No. 1071 (MIT, Cambridge).

    Google Scholar 

  • Horn, B. K. P. and Schunck, B. G. (1981). Determining optical flow. Artif. Intell. 17:185–203.

    Article  Google Scholar 

  • Ikeuchi, K. and Horn, B. K. P. (1981). Numerical shape from shading and occluding boundaries. Artif. Intell. 17:141–184.

    Article  Google Scholar 

  • Hutchinson, J., Koch, C., Luo, J., and Mead, C. (1988). Computing motion using analog and binary resistive networks. IEEE Computer 21:52–63.

    Google Scholar 

  • Ikeuchi, K. and Horn, B. K. P. (1981). Numerical shape from shading and occluding boundaries. Artif. Intell. 17:141–184.

    Article  Google Scholar 

  • Koch, C., Marroquin, J., and Yuille, A. (1986). Analog “neuronal” networks in early vision. Proc. Natl. Acad. Sci. USA 83:4263–4267.

    Article  MathSciNet  Google Scholar 

  • Koch, C. (1989). Seeing chips: analog VLSI circuits for computer vision. Neural Computation 1:184–200.

    Article  Google Scholar 

  • Liu, S. C. and Harris, J. G. (1989). Generalized smoothing networks in solving early vision problems. Computer Vision and Pattern Recognition Conference.

    Google Scholar 

  • Luo, J., Koch, C., and Mead, C. (1988). An experimental subthreshold, analog CMOS two-dimensional surface interpolation circuit. Neural Information Processing Systems Conference, Denver, November.

    Google Scholar 

  • Marr, D. and Poggio, T. (1976). Cooperative computation of stereo disparity. Science 194:283–287.

    Article  Google Scholar 

  • Marroquin, J., Mitter, S., and Poggio, T. (1987). Probabilistic solution of ill-posed problems in computational vision. J. Am. Statistic Assoc. 82:76–89.

    Article  MATH  Google Scholar 

  • Maxwell, J. C. (1891). A Treatise on Electricity and Magnetism, 3rd ed., Vol. I, pp. 407–408. Republished by New York: Dover Publications, 1954.

    Google Scholar 

  • Mead, C. A. (1985). A sensitive electronic photoreceptor. In 1985 Chapel Hill Conference on Very Large Scale Integration, pp. 463–471.

    Google Scholar 

  • Mead, C. A. (1989). Analog VLSI and Neural Systems. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Millar, W. (1951). Some general theorems for non-linear systems possessing resistance. Phil. Mag. 42:1150–1160.

    MathSciNet  MATH  Google Scholar 

  • Nagel, H. H. (1987). On the estimation of optical flow: relations between different approaches and some new results. Artif. Intell. 33:299–324.

    Article  Google Scholar 

  • Penfield, P., Jr., Spence, R., and Duinker, S. (1970). Tellegen’s Theorem and Electrical Networks, Cambridge, MA: MIT Press.

    Google Scholar 

  • Perona, P. and Malik, J. (1988). A network for multiscale image segmentation. Proc. 1988 IEEE Int. Symp. on Circuits and Systems, Espoo, Finland, June, pp. 2565–2568.

    Google Scholar 

  • Poggio, T., Gamble, E. B., and Little, J. J. (1988). Parallel integration of vision modules. Science 242:436–440.

    Article  MathSciNet  Google Scholar 

  • Poggio, T. and Koch, C. (1985). Ill-posed problems in early vision: from computational theory to analogue networks. Proc. R. Soc. Lond. B 226:303–323.

    Article  MATH  Google Scholar 

  • Poggio, T., Torre, V., and Koch, C. (1985). Computational vision and regularization theory. Nature 317:314–319.

    Article  Google Scholar 

  • Poggio, T., Voorhees, H., and Yuille, A. (1986). A regularized solution to edge detection. Artif. Intell. Lab Memo No. 833 (MIT, Cambridge).

    Google Scholar 

  • Sivilotti, M.A., Mahowald, M.A. and Mead, C.A., Real-time visual computation using analog CMOS processing arrays. In: 1987 Stanford Conf. VLSI, pp. 295–312 (MIT Press, Cambridge, 1987).

    Google Scholar 

  • Standley, D. L., and Wyatt, J. L., Jr. (1989). Stability criterion for lateral inhibition and related networks that is robust in the presence of integrated circuit parasitics. In IEEE Trans. Circuits and Systems 36, May., pp. 675–681

    Google Scholar 

  • Standley, D. L. (1989). Design criteria extensions for stable lateral inhibition networks in the presence of circuit parasitics. Proc. 1989 IEEE Int. Symp. on Circuits and Systems, Portland, Oregon, May, pp. 837–840.

    Google Scholar 

  • Tellegen, B. D. H. (1952). A general network theorem, with applications. Phillips Research Reports 7:259–269.

    MathSciNet  MATH  Google Scholar 

  • Terzopoulos, D. (1983). Multilevel computational processes for visual surface reconstruction. Comp. Vision Graph. Image Proc. 24: 52–96.

    Article  Google Scholar 

  • Terzopoulos, D. (1986). Regularization of inverse problems involving discontinuities. IEEE Trans. Pattern Anal. Machine Intell. 8:413–424 (1986).

    Article  Google Scholar 

  • Wyatt, J. L., Jr. and Standley, D. L. (1989). Criteria for robust stability in a class of lateral inhibition networks coupled through resistive grids. Neural Computation 1:58–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Harris, J., Koch, C., Luo, J., Wyatt, J. (1989). Resistive Fuses: Analog Hardware for Detecting Discontinuities in Early Vision. In: Mead, C., Ismail, M. (eds) Analog VLSI Implementation of Neural Systems. The Kluwer International Series in Engineering and Computer Science, vol 80. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-1639-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-1639-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8905-0

  • Online ISBN: 978-1-4613-1639-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics