Skip to main content

Error Modeling in Stereo Navigation

  • Chapter
Autonomous Robot Vehicles
  • 2164 Accesses

Abstract

In stereo navigation, a mobile robot estimates its position by tracking landmarks with on-board cameras. Previous systems for stereo navigation have suffered from poor accuracy, in part because they relied on scalar models of measurement error in triangulation. Using three- dimensional (3D) Gaussian distributions to model triangulation error is shown to lead to much better performance. How to compute the error model from image correspondences, estimate robot motion between frames, and update the global positions of the robot and the landmarks over time are discussed. Simulations show that, compared to scalar error models, the 3D Gaussian reduces the variance in robot position estimates and better distinguishes rotational from translational motion. A short indoor run with real images supported these conclusions and computed the final robot position to within two percent of distance and one degree of orientation. These results illustrate the importance of error modeling in stereo vision for this and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Adiv, “Determining three-dimensional motion and structure from optical flow generated by several moving objects,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-7, pp. 384–401, July 1985.

    Google Scholar 

  2. P. Anandan and R. Weiss, “Introducing a smoothness constraint in a matching approach for the computation of displacement fields,” in Proc. ARPA IUS Workshop, SAIC, Dec. 1985, pp. 186–197.

    Google Scholar 

  3. N. Ayache and O. D. Faugeras, “HYPER: A new approach for the recognition and positioning of two-dimensional objects,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-8, pp. 44–54, Jan. 1986.

    Google Scholar 

  4. H. S. Baird, Model-Based Image Matching Using Location. Cambridge, MA: MIT Press, 1985.

    MATH  Google Scholar 

  5. T. J. Broida and R. Chellappa, “Estimation of motion parameters from noisy images,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 90–99, Jan. 1986.

    Google Scholar 

  6. R. A. Brooks, Symbolic reasoning among 3-D models and 2-D images,Artificial Intell., vol. 17, pp. 285–348, 1981.

    Article  Google Scholar 

  7. L. Dreschler and H.-H. Nagel, “Volumetric model and 3D trajectory of a moving car derived from monocular TV frame sequences of a street scene,” Comput. Graph. Image Processing, vol. 20, pp. 199–228, 1982.

    Article  Google Scholar 

  8. T. F. Elbert, Estimation and Control of Systems. New York: Van Nostrand Reinhold, 1984.

    Google Scholar 

  9. O. D. Faugeras, N. Ayache, B. Faverjon, and F. Lustman, “Building visual maps by combining noisy stereo measurements,” in Proc. IEEE Int. Conf. Robotics and Automation, Apr. 1986, pp. 1433–1438.

    Google Scholar 

  10. A. Gelb, Ed., Applied Optimal Estimation. Cambridge, MA: MIT Press, 1974.

    Google Scholar 

  11. D. B. Gennery, “Modelling the environment of an exploring vehicle by means of stereo vision,” Ph.D. dissertation, Stanford Univ., Stanford, CA, June 1980.

    Google Scholar 

  12. D. B. Gennery, “Tracking known three-dimensional objects,” in Proc. AAAI, 1982, pp. 13–17.

    Google Scholar 

  13. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization. New York: Academic, 1981.

    MATH  Google Scholar 

  14. W. E. L. Grimson and T. Lozano-Perez, “Model-based recognition and localization from sparse range or tactile data,” Int. J. Robotics Res., vol. 3, pp. 3–35, Fall 1984.

    Google Scholar 

  15. J. Hallam, “Resolving observer motion by object tracking,” in Proc. Int. Joint Conf. Artificial Intelligence, 1983.

    Google Scholar 

  16. M. Hebert, “Reconnaissance de formes tridimensionelles,” Ph.D. dissertation, L’Universite de Paris-Sud, Centre d’Orsay, Sept. 1983.

    Google Scholar 

  17. L. H. Matthies and C. E. Thorpe, “Experience with visual robot navigation,” in Proc. IEEE Oceans’84 Conf., Washington, DC, Aug. 1984.

    Google Scholar 

  18. H. P. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot rover,” Ph.D. dissertation, Stanford Univ., Stanford, CA, Sept. 1980.

    Google Scholar 

  19. P. H. Schonemann and R. M. Carroll, “Fitting one matrix to another under choice of a central dilation and a rigid motion,” Psychometrika, vol. 35, pp. 245–255, June 1970.

    Article  Google Scholar 

  20. C. C. Slama, Ed., Manual of Photogrammetry. Falls Church, VA: American Society of Photogrammetry, 1980.

    Google Scholar 

  21. R. C. Smith and P. Cheeseman, “On the representation and estimation of spatial uncertainty,” Tech. Rep. (draft ), SRI International, 1985.

    Google Scholar 

  22. F. Solina, “Errors in stereo due to quantization,” Tech. Rep. MS-CIS- 85–34, Univ. Pennsylvania, Sept. 1985.

    Google Scholar 

  23. C. E. Thorpe, “Vision and navigation for a robot rover,” Ph.D. dissertation, Carnegie-Mellon Univ., Dec. 1984.

    Google Scholar 

  24. R. Y. Tsai and T. S. Huang, “Uniqueness and estimation of three- dimensional motion parameters of rigid objects with curved surfaces,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-6, pp. 13–26, Jan. 1984.

    Google Scholar 

  25. A. M. Waxman and J. J. Duncan, “Binocular image flows,” in Proc. Workshop on Motion: Representation and Analysis, May 1986, pp. 31–38.

    Google Scholar 

  26. J. R. Wertz, Ed., Spacecraft Attitude Determination and Control. D. Reidel Publishing, 1978.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 AT&T

About this chapter

Cite this chapter

Matthies, L., Shafer, S.A. (1990). Error Modeling in Stereo Navigation. In: Cox, I.J., Wilfong, G.T. (eds) Autonomous Robot Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8997-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-8997-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4613-8999-6

  • Online ISBN: 978-1-4613-8997-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics