Abstract
A sonar-based mapping and navigation system developed for an autonomous mobile robot operating in unknown and unstructured environments is described. The system uses sonar range data to build a multileveled description of the robot’s surroundings. Sonar readings are interpreted using probability profiles to determine empty and occupied areas. Range measurements from multiple points of view are integrated into a sensor-level sonar map, using a robust method that combines the sensor information in such a way as to cope with uncertainties and errors in the data. The resulting two-dimensional maps are used for path planning and navigation. From these sonar maps, multiple representations are developed for various kinds of problem-solving activities. Several dimensions of representation are defined: the abstraction axis, the geographical axis, and the resolution axis. The sonar mapping procedures have been implemented as part of an autonomous mobile robot navigation system called Dolphin. The major modules of this system are described and related to the various mapping representations used. Results from actual runs are presented, and further research is mentioned. The system is also situated within the wider context of developing an advanced software architecture for autonomous mobile robots.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
U. Ahrens, “Möglichkeiten und Probleme der Anwendung von Luft- Ultraschallsensoren in der Montage-und Handhabungstechnik,” Robotersysteme, vol. 1, 1, 1985.
“Mülichkeiten und Grenzen des Einsatzes von Luft-Ultra-schallsensoren in der Montage-und Handhabungstechnik,” Robotersysteme, vol. 1, 4, 1985
A. B. Baggeroer, Sonar Signal Processing, in Applications of Digital Signal Processing, Signal Processing Series. Englewood Cliff, NJ: Prentice-Hall, 1978.
M. K. Brown, “Locating object surfaces with an ultrasonic range sensor,” in Proc. 1985 IEEE Int. Conf. Robotics and Automation, St. Louis, MO, Mar. 1985.
A. Chattergy, “Some heuristics for the navigation of a robot,” Robotics Res. Lab., Dep. Elec. Eng., Univ. of Hawaii, Honolulu, 1984.
J. L. Crowley, “Position estimation for an intelligent mobile robot,” in 1983 Annu. Research Rev., Robotics Inst., Carnegie-Mellon Univ., Pittsburgh, PA, 1984.
J. L. Crowley, “Dynamic world modelling for an intelligent mobile robot using a rotating ultra-sonic ranging device,” in Proc. 1985 IEEE Int. Conf. Robotics and Automation, St. Louis, MO, Mar. 1985.
G. B. Devey and P. N. T. Wells, “Ultrasound in medical diagnosis,” Sci. Amer., vol. 238, May 1978.
M. Drumheller, “Mobile robot localization using sonar,” Artificial Intelligence Lab., Mass. Inst. Technol., AI-M-826, Jan. 1985.
A. Elfes and S. N. Talukdar, “A distributed control system for the CMU rover,” in Proc. 8th Int. Joint Conf. Artificial Intelligence, Karlsruhe, Germany, Aug. 1983.
A. Elfes, “Multiple levels of representation and problem-solving using maps from sonar data,” in Proc. DOE/CESAR Workshop on Planning and Sensing for Autonomous Navigation, Oak Ridge Nat. Lab., Univ. California, Los Angeles, Aug. 18–19, 1985.
A. Elfes, “A sonar-based mapping and navigation system,” in 1986 IEEE Int. Conf. Robotics and Automation, San Francisco, CA, Apr. 7–10, 1986.
A. Elfes, “A distributed control architecture for an autonomous mobile robot,” Int. J. Artificial Intelligence in Eng., vol. 1, Oct. 1986.
O. D. Faugeras, “Object representation, identification, and positioning from range data,” presented at the 1st Int. Symp. Robotics Research, Cambridge, MA, 1984.
G. Giralt, R. Chatila, and M. Vaisset, “An integrated navigation and motion control system for autonomous multisensory mobile robots,” presented at the 1st Int. Symp. Robotics Research, Cambridge, MA, 1984.
W. E. L. Grimson, From Images to Surfaces: A Computational Study of the Human Early Visual Systems. Cambridge, MA: MIT Press, 1981.
J. Hallam, “Resolving observer motion by object tracking,” in Proc. 8th Int. Joint Conf. Artificial Intelligence, Karlsruhe, Germany, Aug. 1983, pp. 792–798.
P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of minimum cost paths,” IEEE Trans. Syst., Sci., Cybern., vol. SSC-4, 1968.
M. Herbert and T. Kanade, “Outdoor scene analysis using range data,” in Proc. 1986 IEEE Int. Conf. Robotics and Automation, San Francisco, CA, Apr. 7–10, 1986.
M. Hussey, Diagnostic Ultrasound: An Introduction to the Interactions between Ultrasound and Biological Tissues. London: Blackie, 1975.
R A. Jarvis, “A perspective on range finding techniques for computer vision,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-5, Mar. 1983.
M. Julliere and L. Marce, “Contribution a l’autonomie des robots mobiles,” Lab. D’Applications des Techniques Electroniques Avancées, Inst. Nat. des Sciences Appliqués, Rennes, France, 1982.
T. Kanade and C. E. Thorpe, “CMU strategic computing vision project report: 1984 to 1985,” Robotics Inst., Carnegie-Mellon Univ., Pittsburgh, PA, CMU-RI-TR-86-2, Nov. 1985.
M. Lionel, “Contribution a l’autonomie des robots mobiles,” Ph.D. dissertation, L’Institut National des Sciences Appliquées de Rennes et L’Université de Rennes I, Rennes, France, July 1984.
L. H. Matthies and C. E. Thorpe, “Experience with visual robot navigation,” in Proc. IEEE Oceans 84, Washington, DC, Aug. 1984.
G. L. Miller, R. A. Boie, and M. J. Sibilia, “Active damping of ultrasonic transducers for robotic applications,” in Proc. Int. Conf. Robotics, Atlanta, GA, Mar. 1984.
D. Miller, “Two dimensional mobile robot positioning using onboard sonar,” in Pecora IX Remote Sensing Symp. Proc., Sioux Falls, SD, Oct. 1984.
D. Miller, “A spatial representation system for mobile robots,” in Proc. 1985 IEEE Int. Conf. Robotics and Automation, St. Louis, MO, Mar. 1985.
H. P. Moravec, “Obstacle avoidance and navigation in the real world by a seeing robot rover,” Ph.D. dissertation, Stanford Univ., Sept. 1980 (also available as Stanford AIM-340, Cs-80-813 and CMU-RI- TR-01-82, 1982; and published as Robot Rover Visual Navigation. Ann Arbor, MI: UMI Research Press, 1981.
H. P. Moravec, “The Stanford cart and the CMU rover,” Proc. IEEE, vol. 71, July 1983.
H. P. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” presented at the Int. Conf. Robotics and Automation, IEEE, Mar. 1985.
H. P. Moravec and A. Elfes, “High resolution maps from wid angle sona,” presented at the Int. Conf. Robotics and Automation, IEEE, Mar. 1985.
H. P. Moravec, “Three-dimensional imaging with cheap sonar,” in Autonomous Mobile Robots: Annual Report 1985, Mobile Robot Lab., Pittsburgh, PA, Tech. Rep. CMU-RI-TR-86-4, Feb. 1986.
H. K. Nishihara and T. Poggio, “Stereo vision for robotics,” presented at the 1st Int. Symp. Robotics Research, Cambridge, MA, 1984.
Y. Ohta and T. Kanade, “Stereo by intra- and inter-scanline search using dynamic programming,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-7, Mar. 1985.
G. W. Podnar, M. K. Blackwell, and K. Dowling, “A functional vehicle for autonomous mobile robot research,” CMU Robotics Inst., Apr. 1984.
G. Podnar, “The Uranus mobile robot,” Autonomous Mobile Robots: Ann. Rep. 1985, Mobile Robot Lab., Pittsburgh, PA, Tech. Rep. CMU-RI-TR-86-4, Feb. 1986.
Ultrasonic Range Finders. Polaroid Corporation, 1982.
B. Serey and L. Mattheis, “Obstacle avoidance using 1-D stereo vision,” to be published.
C. E. Thorpe, “The CMU rover and the FIDO vision and navigation system,” presented at the Symp. Autonomous Underwater Robots, Univ. New Hampshire, Marine Systems Engineering Lab., May 1983.
C. E. Thorpe, “FIDO: Vision and navigation for a robot rover,” Ph.D. dissertation, Dep. of Comput., Sci., Carnegie-Mellon Univ., Pittsburgh, PA, Dec. 1984.
C. E. Thorpe, “Path relaxation: Path planning for a mobile robot,” CMU Robotics Inst., CMU-RI-TR-84-5, Apr. 1984, also in Proc. IEEE Oceans 84, Washington, DC, Aug. 1984, and Proc. AAAI-84, Austin, TX, Aug. 1984.
R. S. Wallace, K. Matsuzaki, Y. Goto, J. Webb, J. Crisman, and T. Kanade, “Progress in robot road following,” in Proc. 1986 IEEE Int. Conf. Robotics and Automation San Francisco, CA, Apr. 1986.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1990 AT&T
About this chapter
Cite this chapter
Elfes, A. (1990). Sonar-Based Real-World Mapping and Navigation. In: Cox, I.J., Wilfong, G.T. (eds) Autonomous Robot Vehicles. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-8997-2_18
Download citation
DOI: https://doi.org/10.1007/978-1-4613-8997-2_18
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4613-8999-6
Online ISBN: 978-1-4613-8997-2
eBook Packages: Springer Book Archive