Skip to main content

Why Integration is Hard

  • Conference paper
Computers and Mathematics
  • 135 Accesses

Abstract

This paper is a brief introduction to how the techniques of computational complexity can be applied to real analysis—integration in particular. We investigate how the difficulty of computing a function relates to the difficulty of computing its integral. Our comments are directed to an audience that is more familiar with traditional analysis and numerical methods than it is with complexity theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O. Aberth. Computable Analysis. 1980. McGraw-Hill.

    MATH  Google Scholar 

  2. E. Bishop. Foundations of Constructive Analysis. 1967. McGraw-Hill.

    MATH  Google Scholar 

  3. J. M. Borwein and P. B. Borwein. On the complexity of familiar functions and numbers. Draft. Private Communication, 1986.

    Google Scholar 

  4. H. Friedman. The computational complexity of maximization and integration. Adv. in Math., 53, 1984, 80–98.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. R. Garey and D. S. Johnson. Computers and Intractability. Freeman, 1979.

    MATH  Google Scholar 

  6. J. von zur Gathen. Feasible arithmetic computations: Valiant’s hypothesis. J. Symb. Comp., 4, 1987, 137–172.

    Article  MATH  Google Scholar 

  7. J. von zur Gathen and G. Seroussi. Boolean circuits versus arithmetic circuits. Proc. 6th Int. Conf. in Computer Science, Santiago, Chile. 1986, 171–184.

    Google Scholar 

  8. A. Grzegorczyk. On the definition of computable real continuous functions. Fund. Math., 44, 1957, 61–71.

    MATH  MathSciNet  Google Scholar 

  9. H. J. Hoover. Feasibly constructive analysis. Ph.D. thesis and Technical Report 206/87, Department of Computer Science, University of Toronto, 1987.

    Google Scholar 

  10. H. J. Hoover. Feasible real functions and arithmetic circuits. Technical Report TR 88-16, August 1988, Department of Computing Science, University of Alberta, Edmonton, Canada.

    Google Scholar 

  11. K. Ko and H. Friedman. Computational complexity of real functions. Theoret. Comput. Sci., 20, 1982, 323–352.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. M. Turing. On computable numbers, with an application to the entscheidungsproblem. Proc. London Math. Soc. (2), 42, 1936/37, 230–265.

    Google Scholar 

  13. A. M. Turing. A correction. Proc. London Math. Soc. (2), 43, 1937, 544–546.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York Inc.

About this paper

Cite this paper

Hoover, H.J. (1989). Why Integration is Hard. In: Kaltofen, E., Watt, S.M. (eds) Computers and Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4613-9647-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-9647-5_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97019-6

  • Online ISBN: 978-1-4613-9647-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics