Skip to main content

Large Scale Spatial Augmented Reality for Design and Prototyping

  • Chapter
  • First Online:
Handbook of Augmented Reality

Abstract

Spatial Augmented Reality allows the appearance of physical objects to be transformed using projected light. Computer controlled light projection systems have become readily available and cost effective for both commercial and personal use. This chapter explores how large Spatial Augmented Reality systems can be applied to enhanced design mock-ups. Unlike traditional appearance altering techniques such as paints and inks, computer controlled projected light can change the color of a prototype at the touch of a button allowing many different appearances to be evaluated. We present the customized physical-virtual tools we have developed such as our hand held virtual spray painting tool that allows designers to create many customized appearances using only projected light. Finally, we also discuss design parameters of building dedicated projection environments including room layout, hardware selection and interaction considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.polhemus.com.

  2. 2.

    http://www.naturalpoint.com/optitrack/.

  3. 3.

    This only applies to LCD or similar projectors that use a lens, but not LASER-based projectors as they do not have a focal distance.

  4. 4.

    http://www.ptgrey.com/products/grasshopper2.

  5. 5.

    http://www.polhemus.com.

  6. 6.

    http://www.vicon.com.

References

  1. Akaoka, E., Vertegaal, R.: DisplayObjects: prototyping functional physical interfaces on 3D styrofoam, paper or cardboard models. In: ACM Conference on Human Factors in Computing Systems. Boston, Massachusetts (2009)

    Google Scholar 

  2. Bandyopadhyay, D., Raskar, R., Fuchs, H.: Dynamic shader lamps: Painting on movable objects. In: IEEE and ACM International Symposium on Mixed and Augmented Reality, pp. 207–216 (2001)

    Google Scholar 

  3. Bimber, O., Coriand, F., Kleppe, A., Bruns, E., Zollmann, S., Langlotz, T.: Superimposing pictorial artwork with projected imagery. Multimedia, IEEE 12(1), 16–26 (2005)

    Article  Google Scholar 

  4. Bimber, O., Emmerling, A.: Multifocal projection: a multiprojector technique for increasing focal depth. Visualization and Computer Graphics, IEEE Transactions on 12(4), 658–667 (2006)

    Article  Google Scholar 

  5. Bimber, O., Frohlich, B., Schmalsteig, D., Encarnacao, L.M.: The virtual showcase. Computer Graphics and Applications, IEEE 21(6), 48–55 (2001)

    Article  Google Scholar 

  6. Cruz-Neira, C., Sandin, D.J., DeFanti, T.A.: Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, pp. 135–142. ACM, Anaheim, CA (1993)

    Google Scholar 

  7. Fitzmaurice, G.W., Ishii, H., Buxton, W.A.S.: Bricks: Laying the foundations for graspable user interfaces. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 442–449. ACM Press/Addison-Wesley Publishing Co., Denver, Colorado, United States (1995)

    Google Scholar 

  8. Hare, J., Gill, S., Loudon, G., Ramduny-Ellis, D., Dix, A.: Physical fidelity: Exploring the importance of physicality on Physical-Digital conceptual prototyping. In: Human-Computer Interaction INTERACT 2009, pp. 217–230 (2009)

    Google Scholar 

  9. Hoffman, H., Hollander, A., Schroder, K., Rousseau, S., Furness, T.: Physically touching and tasting virtual objects enhances the realism of virtual experiences. Virtual Reality 3(4), 226–234 (1998). 10.1007/BF01408703

    Article  Google Scholar 

  10. Kato, H., Billinghurst, M.: Marker tracking and HMD calibration for a Video-Based augmented reality conferencing system. In: Augmented Reality, International Workshop on, vol. 0, p. 85. IEEE Computer Society, Los Alamitos, CA, USA (1999)

    Google Scholar 

  11. Lee, J.C., Dietz, P.H., Maynes-Aminzade, D., Raskar, R., Hudson, S.E.: Automatic projector calibration with embedded light sensors. In: Proceedings of the 17th annual ACM symposium on User interface software and technology, pp. 123–126. ACM, Santa Fe, NM, USA (2004)

    Google Scholar 

  12. Marner, M.R., Thomas, B.H.: Augmented foam sculpting for capturing 3D models. In: IEEE Symposium on 3D User Interfaces. Waltham Massachusetts, USA (2010)

    Google Scholar 

  13. Marner, M.R., Thomas, B.H.: Tool virtualization and spatial augmented reality. In: Proceedings of the 20th International Conference on Artificial Reality and Telexistence. Adelaide, South Australia (2010)

    Google Scholar 

  14. Marner, M.R., Thomas, B.H., Sandor, C.: Physical-Virtual tools for spatial augmented reality user interfaces. In: International Symposium on Mixed and Augmented Reality. Orlando, Florida (2009)

    Google Scholar 

  15. Pahl, G., Beitz, W., Wallace, K.: Engineering design: A systematic approach. Springer (1984)

    Google Scholar 

  16. Pinhanez, C.: The everywhere displays projector: A device to create ubiquitous graphical interfaces. In: Ubicomp 2001: Ubiquitous Computing, pp. 315–331 (2001)

    Google Scholar 

  17. Piper, B., Ishii, H.: CADcast: a method for projecting spatially referenced procedural instructions. Tech. rep., MIT Media Lab (2001)

    Google Scholar 

  18. Piper, B., Ratti, C., Ishii, H.: Illuminating clay: a 3-D tangible interface for landscape analysis. In: Proceedings of the SIGCHI conference on Human factors in computing systems: Changing our world, changing ourselves, pp. 355–362. ACM, Minneapolis, Minnesota, USA (2002)

    Google Scholar 

  19. Pugh, S.: Total Design: integrated methods for successful product engineering. Addison-Wesley (1991)

    Google Scholar 

  20. Raskar, R., Beardsley, P., van Baar, J., Wang, Y., Dietz, P., Lee, J., Leigh, D., Willwacher, T.: RFIG lamps: interacting with a self-describing world via photosensing wireless tags and projectors. ACM Trans. Graph. 23(3), 406–415 (2004)

    Article  Google Scholar 

  21. Raskar, R., Low, K.: Interacting with spatially augmented reality. In: Proceedings of the 1st international conference on Computer graphics, virtual reality and visualisation, pp. 101–108. ACM, Camps Bay, Cape Town, South Africa (2001)

    Google Scholar 

  22. Raskar, R., Low, K.: Blending multiple views. In: Proceedings of the 10th Pacific Conference on Computer Graphics and Applications, p. 145. IEEE Computer Society (2002)

    Google Scholar 

  23. Raskar, R., Welch, G., Cutts, M., Lake, A., Stesin, L., Fuchs, H.: The office of the future: A unified approach to Image-Based modeling and spatially immersive displays. In: SIGGRAPH ’98 (1998)

    Google Scholar 

  24. Raskar, R., Welch, G., Low, K., Bandyopadhyay, D.: Shader lamps: Animating real objects with Image-Based illumination. In: Rendering Techniques 2001: Proceedings of the Eurographics, pp. 89–102 (2001)

    Google Scholar 

  25. Raskar, R., Ziegler, R., Willwacher, T.: Cartoon dioramas in motion. In: NPAR ’02: Proceedings of the 2nd international symposium on Non-photorealistic animation and rendering, p. 7ff. ACM, New York, NY, USA (2002). Inproceedings

    Google Scholar 

  26. Rekimoto, J., Saitoh, M.: Augmented surfaces: a spatially continuous work space for hybrid computing environments. In: Proceedings of the SIGCHI conference on Human factors in computing systems: the CHI is the limit, pp. 378–385. ACM, Pittsburgh, Pennsylvania, United States (1999)

    Google Scholar 

  27. Rost, R.J., Licea-Kane, B., Ginsburg, D., Kessenich, J.M., Lichtenbelt, B., Malan, H., Weiblen, M.: OpenGL Shading Language, 3 edn. Addison-Wesley Professional (2009)

    Google Scholar 

  28. Schwerdtfeger, B., Pustka, D., Hofhauser, A., Klinker, G.: Using laser projectors for augmented reality. In: Proceedings of the 2008 ACM symposium on Virtual reality software and technology, pp. 134–137. ACM, Bordeaux, France (2008)

    Google Scholar 

  29. Smith, R.T., Marner, M.R., Thomas, B.: Adaptive color marker for SAR environments. In: Poster Sessions: Proceedings of the IEEE Symposium on 3D User Interfaces (to appear). Singapore (2011)

    Google Scholar 

  30. Suganuma, A., Ogata, Y., Shimada, A., Arita, D., ichiro Taniguchi, R.: Billiard instruction system for beginners with a projector-camera system. In: Proceedings of the 2008 International Conference on Advances in Computer Entertainment Technology, pp. 3–8. ACM, Yokohama, Japan (2008)

    Google Scholar 

  31. Sutherland, I.E.: The ultimate display. In: Proceedings of the IFIP Congress, pp. 506–508 (1965)

    Google Scholar 

  32. Szalavri, Z., Gervautz, M.: The personal interaction panel - a two handed interface for augmented reality. pp. 335–346. Budapest, Hungary (1997)

    Google Scholar 

  33. Ullmer, B., Ishii, H.: The metaDESK: models and prototypes for tangible user interfaces. In: Proceedings of the 10th annual ACM symposium on User interface software and technology, pp. 223–232. ACM, Banff, Alberta, Canada (1997)

    Google Scholar 

  34. Underkoffler, J., Ishii, H.: Urp: a luminous-tangible workbench for urban planning and design. In: Proceedings of the SIGCHI conference on Human factors in computing systems: the CHI is the limit, pp. 386–393. ACM, Pittsburgh, Pennsylvania, United States (1999)

    Google Scholar 

  35. Verlinden, J., de Smit, A., Peeters, A., van Gelderen, M.: Development of a flexible augmented prototyping system. Journal of WSCG (2003)

    Google Scholar 

  36. Ware, C., Rose, J.: Rotating virtual objects with real handles. ACM Trans. Comput.-Hum. Interact. 6(2), 162–180 (1999). 319102

    Google Scholar 

  37. Zaeh, M., Vogl, W.: Interactive laser-projection for programming industrial robots. In: Mixed and Augmented Reality, 2006. ISMAR 2006. IEEE/ACM International Symposium on, pp. 125–128 (2006). DOI 10.1109/ISMAR.2006.297803

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Marner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Marner, M.R., Smith, R.T., Porter, S.R., Broecker, M.M., Close, B., Thomas, B.H. (2011). Large Scale Spatial Augmented Reality for Design and Prototyping. In: Furht, B. (eds) Handbook of Augmented Reality. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-0064-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-0064-6_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-0063-9

  • Online ISBN: 978-1-4614-0064-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics