Skip to main content

Activity Recognition from Trajectory Data

  • Chapter
  • First Online:
Computing with Spatial Trajectories

Abstract

In today's world, we have increasingly sophisticated means to record the movement of humans and other moving objects in the form of trajectory data. These data are being accumulated at an extremely fast rate. As a result, knowledge discovery from these data for recognizing activities has become an important problem. The discovered activity patterns can help us understand people's lives, analyze traffic in a large city and study social networks among people. Trajectory-based activity recognition builds upon some fundamental functions of location estimation and machine learning, and can provide new insights on how to infer high-level goals and objectives from low-level sensor readings. In this chapter, we survey the area of trajectory-based activity recognition. We start from research in location estimation from sensors for obtaining the trajectories. We then review trajectory-based activity recognition research. We classify the research work on trajectory-based activity recognition into several broad categories, and systematically summarize existing work as well as future works in light of the categorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahl, P., Padmanabhan, V.N.: Radar: An in-building rf-based user location and tracking system. In: Proc. The Annual IEEE International Conference on Computer Communications (INFOCOM), pp. 775–784 (2000)

    Google Scholar 

  2. Barnard, K., Duygulu, P., Forsyth, D.A., de Freitas, N., Blei, D.M., Jordan, M.I.: Matching words and pictures. Journal of Machine Learning Research 3 (2003)

    Google Scholar 

  3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3, 993–1022 (2003)

    MATH  Google Scholar 

  4. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge Univ Pr (2004)

    Google Scholar 

  5. Brand, M., Oliver, N., Pentland, A.: Coupled hidden markov models for complex action recognition. In: Proceedings of the 1997 Conference on Computer Vision and Pattern Recognition (CVPR 97), CVPR 97, p. 994. IEEE Computer Society, Washington, DC, USA (1997)

    Google Scholar 

  6. Breiman, L.: Classification and regression trees. Chapman & Hall/CRC (1984)

    Google Scholar 

  7. Cao, H., Mamoulis, N., Cheung, D.: Mining frequent spatio-temporal sequential patterns. In: Proc. of IEEE International Conference on Data Mining (ICDM), pp. 8–pp. IEEE (2005)

    Google Scholar 

  8. Doucet, A., De Freitas, N., Gordon, N.: Sequential Monte Carlo methods in practice. Springer Verlag (2001)

    Google Scholar 

  9. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods for bayesian filtering. Statistics and computing 10(3), 197–208 (2000)

    Article  Google Scholar 

  10. Eagle, N., Pentland, A.: Eigenbehaviors: Identifying structure in routine. Behavioral Ecology and Sociobiology 63(7), 1057–1066 (2009)

    Article  Google Scholar 

  11. Eagle, N., (Sandy) Pentland, A.: Reality mining: sensing complex social systems. Personal Ubiquitous Comput. 10, 255–268 (2006)

    Google Scholar 

  12. Farrahi, K., Gatica-Perez, D.: Discovering routines from large-scale human locations using probabilistic topic models. ACM Transactions on Intelligent Systems and Technology (TIST) 2(1), 3 (2011)

    Google Scholar 

  13. Hofmann, T., Puzicha, J.: Latent class models for collaborative filtering. In: Proc. of the 16th International Joint Conference on Artificial Intelligence (IJCAI 99), pp. 688–693 (1999)

    Google Scholar 

  14. Hofmann-Wellenhof, B., Lichtenegger, H., Collins, J.: Global positioning System. Theory and Practice. (1993)

    Google Scholar 

  15. Huynh, T., Fritz, M., Schiele, B.: Discovery of activity patterns using topic models. In: Proc. of International Conference on Ubiquitous Computing (UbiComp), pp. 10–19 (2008)

    Google Scholar 

  16. Huynh, T., Schiele, B.: Analyzing features for activity recognition. p. 159C163. Smart objects and ambient in- telligence: innovative context-aware services (2005)

    Google Scholar 

  17. van Kasteren, T., Englebienne, G., Kr¨ose, B.J.A.: Transferring knowledge of activity recognition across sensor networks. In: Proc. of the International Conference of Pervasive Computing, pp. 283–300 (2010)

    Google Scholar 

  18. Krumm, J. (ed.): Ubiquitous Computing Fundamentals. Chapman and Hall/CRC, Boca Raton, FL (2010)

    Google Scholar 

  19. Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., Wallach, D.S., Marceau, G.: Roboticsbased location sensing using wireless ethernet. In: Proc. of The Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 227–238 (2002)

    Google Scholar 

  20. Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proc. The International Conference on Machine Learning (ICML), pp. 282–289 (2001)

    Google Scholar 

  21. Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: Proc. of the ACM Conference on Knowledge Discovery and Data Mining (KDD), pp. 1099–1108 (2010)

    Google Scholar 

  22. Li, Z., Han, J., Ji, M., Tang, L.A., Yu, Y., Ding, B., Lee, J.G., Kays, R.: Movemine: Mining moving object data for discovery of animal movement patterns. ACM Transactions on Intelligent Systems and Technology (ACM TIST) (Special Issue on Computational Sustainability) (Aug. 2010)

    Google Scholar 

  23. Lian, C.C., Hsu, J.Y.j.: Probabilistic models for concurrent chatting activity recognition. In: Proc. of the 21st International Jont Conference on Artifical Jntelligence (IJCAI 09) (2009)

    Google Scholar 

  24. Liao, L., Fox, D., Kautz, H.A.: Extracting places and activities from gps traces using hierarchical conditional random fields. I. J. Robotic Res. 26(1), 119–134 (2007)

    Article  Google Scholar 

  25. Liao, L., Patterson, D.J., Fox, D., Kautz, H.A.: Learning and inferring transportation routines. Artif. Intell. 171(5-6), 311–331 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, S., Liu, Y., Ni, L.M., 0002, J.F., Li, M.: Towards mobility-based clustering. In: Proc. of the ACM Conference on Knowledge Discovery and Data Mining (KDD), pp. 919–928 (2010)

    Google Scholar 

  27. Miluzzo, E., Cornelius, C., Ramaswamy, A., Choudhury, T., Liu, Z., Campbell, A.T.: Darwin phones: the evolution of sensing and inference on mobile phones. In: Proc. The Annual International Conference on Mobile Systems (MobiSys), pp. 5–20 (2010)

    Google Scholar 

  28. Murphy, K.: Dynamic bayesian networks: representation, inference and learning. Ph.D. thesis, UC Berkeley, Computer Science Division (2002)

    Google Scholar 

  29. Nazerfard, E., Rashidi, P., Cook, D.J.: Using association rule mining to discover temporal relations of daily activities

    Google Scholar 

  30. Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: Landmarc: Indoor location sensing using active rfid. Wireless Networks 10(6), 701–710 (2004)

    Article  Google Scholar 

  31. Pan, J.J., Yang, Q., Pan, S.J.: Online co-localization in indoor wireless networks by dimension reduction. In: Proc. of National Conference on Artificial Intelligence (AAAI), pp. 1102–1107 (2007)

    Google Scholar 

  32. Patterson, D.J., Liao, L., Fox, D., Kautz, H.A.: Inferring high-level behavior from low-level sensors. In: Proc. of International Conference on Ubiquitous Computing (UbiComp), pp. 73–89 (2003)

    Google Scholar 

  33. Quinlan, J.: C4. 5: programs for machine learning. Morgan Kaufmann (1993)

    Google Scholar 

  34. Rabiner, L.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  35. Reddy, S., Mun, M., Burke, J., Estrin, D., Hansen, M.H., Srivastava, M.B.: Using mobile phones to determine transportation modes. ACM Transactions on Sensor Networks (TOSN) 6(2) (2010)

    Google Scholar 

  36. Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes twitter users: real-time event detection by social sensors. In: Proc. of InternationalWorldWideWeb Conference, pp. 851–860 (2010)

    Google Scholar 

  37. Schulz, D., Fox, D., Hightower, J.: People tracking with anonymous and id-sensors using rao-blackwellised particle filters. In: Proc. of International Joint Conferences on Artificial Intelligence (IJCAI), pp. 921–928 (2003)

    Google Scholar 

  38. Sutton, C.A., Rohanimanesh, K., McCallum, A.: Dynamic conditional random fields: factorized probabilistic models for labeling and segmenting sequence data. In: Proc. The International Conference on Machine Learning (ICML) (2004)

    Google Scholar 

  39. Thiagarajan, A., Ravindranath, L., LaCurts, K., Madden, S., Balakrishnan, H., Toledo, S., Eriksson, J.: Vtrack: accurate, energy-aware road traffic delay estimation using mobile phones

    Google Scholar 

  40. Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of cognitive neuroscience 3(1), 71–86 (1991)

    Article  Google Scholar 

  41. Vail, D.L., Veloso, M.M., Lafferty, J.D.: Conditional random fields for activity recognition. In: Proc. the International Conference on Autonomous Agents and Multiagent Systems (AAMAS), p. 235 (2007)

    Google Scholar 

  42. Wang, L., Gu, T., Tao, X., Lu, J.: Sensor-based human activity recognition in a multi-user scenario. In: Proc. of the International Joint Conference on Ambient Intelligence (AmI), pp. 78–87 (2009)

    Google Scholar 

  43. Yang, Q., Pan, S.J., Zheng, V.W.: Estimating location using wi-fi. IEEE Intelligent Systems 23(1), 8–13 (2008)

    Article  Google Scholar 

  44. Yin, J., Chai, X., Yang, Q.: High-level goal recognition in a wireless lan. In: Proc. of National Conference on Artificial Intelligence (AAAI), pp. 578–584 (2004)

    Google Scholar 

  45. Yin, J., Shen, D., Yang, Q., Li, Z.N.: Activity recognition through goal-based segmentation. In: Proc. of National Conference on Artificial Intelligence (AAAI), pp. 28–34 (2005)

    Google Scholar 

  46. Zheng, V.W., Yang, Q.: User-dependent aspect model for collaborative activity recognition. In: In Proc. of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11) (2011)

    Google Scholar 

  47. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.Y.: Understanding mobility based on gps data. In: Proc. of International Conference on Ubiquitous Computing (UbiComp), pp. 312–321 (2008)

    Google Scholar 

  48. Zheng, Y., Xie, X.: Learning travel recommendations from user-generated gps traces. ACM Transactions on Intelligent Systems and Technology (TIST) 2(1), 2 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zhu, Y., Zheng, V.W., Yang, Q. (2011). Activity Recognition from Trajectory Data. In: Zheng, Y., Zhou, X. (eds) Computing with Spatial Trajectories. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-1629-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-1629-6_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-1628-9

  • Online ISBN: 978-1-4614-1629-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics