Skip to main content

Markovian Trees Subject to Catastrophes: Would They Survive Forever?

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 27))

Abstract

We consider multitype Markovian branching processes subject to catastrophes which kill random numbers of living individuals at random epochs. It is well known that the criteria for the extinction of such a process is related to the conditional growth rate of the population, given the history of the process of catastrophes, and that it is usually hard to evaluate. We give a simple characterization in the case where all individuals have the same probability of surviving a catastrophe, and we determine upper and lower bounds in the case where survival depends on the type of individual. The upper bound appears to be often much tighter than the lower bound.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersen, A.T., Neuts, M.F., Nielsen, B.F.: On the time reversal of Markovian arrival processes. Stoch. Models 20, 237–260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Asmussen, S., Koole, G.: Marked point processes as limits of Markovian arrival streams. J. Appl. Probab. 30, 365–372 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asmussen, S., Ramaswami, V.: Probabilistic interpretations of some duality results for the matrix paradigms in queueing theory. Comm. Stat. Stoch. Models 6, 715–733 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Athreya, K., Karlin, S.: On branching processes with random environments, i: Extinction probabilities. Ann. Math. Stat. 5, 1499–1520 (1971)

    Article  MathSciNet  Google Scholar 

  5. Athreya, K.B., Ney, P.E.: Branching Processes. Springer, New York (1972)

    Book  MATH  Google Scholar 

  6. Bean, N.G., Kontoleon, N., Taylor, P.G.: Markovian trees: properties and algorithms. Ann. Oper. Res. 160, 31–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berman, A., Plemmons, R.J.: In: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics. SIAM, Philadelphia (1994)

    Book  MATH  Google Scholar 

  8. Caswell, H.: Applications of Markov chains in demography. In: Langville, A.N., Stewart, W.J. (eds.) MAM 2006: Markov Anniversary Meeting, pp. 319–334. Boson Press, Raleigh (2006)

    Google Scholar 

  9. Fiedler, M., Plák, V.: On matrices with non-positive off-diagonal elements and positive principal minor. Czech. Math. J. 12(3), 382–400 (1962)

    Google Scholar 

  10. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31, 457–469 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gharavi, R., Anantharam, V.: An upper bound for the largest Lyapunov exponent of a Markovian random matrix product of nonnegative matrices. Theor. Comp. Sci. 332, 543–557 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  13. Harris, T.: The Theory of Branching Processes. Dover, New York (1963)

    Book  MATH  Google Scholar 

  14. Key, E.: Computable examples of the maximal Lyapunov exponent. Probab. Theor. Relat. Fields 75, 97–107 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Key, E.: Lower bounds for the maximal Lyapunov exponent. J. Theor. Probab. 3(3), 477–488 (1987)

    Article  MathSciNet  Google Scholar 

  16. Kingman, J.F.C.: Subadditive ergodic theory. Ann. Probab. 1, 883–909 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lima, R., Rahibe, M.: Exact Lyapunov exponent for infinite products of random matrices. J. Phys. A Math. Gen. 27, 3427–3437 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45, 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Neuts, M.F.: A versatile Markovian point process. J. Appl. Probab. 16, 764–779 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oseledec, V.I.: A multiplicative ergodic theorem: Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc. 19, 197–231 (1968)

    MathSciNet  Google Scholar 

  21. Ross, S.M.: Stochastic Processes, 2nd edn. Wiley, New York (1996)

    MATH  Google Scholar 

  22. Smith, W., Wilkinson, W.: On branching processes in random environments. Ann. Math. Stat. 40, 814–827 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tanny, D.: Limit theorems for branching processes in a random environment. Ann. Probab. 5, 100–116 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tanny, D.: On multitype branching processes in a random environment. Adv. Appl. Probab. 13, 464–497 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tsitsiklis, J., Blondel, V.: The Lyapunov exponent and joint spectral radius of pairs of matrices are hard – when not impossible – to compute and to approximate. Math. Control Signals Syst. 10, 31–40 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Watkins, J.C.: Limit theorems for products of random matrices. In: Cohen, J.E., Kesten, H., Newman, C.M. (eds.) Random Matrices and Their Applications. Contemporary Mathematics, vol. 50, pp. 5–22. American Mathematical Society, Providence (1986)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was subsidized by the ARC Grant AUWB-08/13–ULB 5 financed by the Ministère de la Communauté française de Belgique. The first author also gratefully acknowledges the support from the Fonds de la Recherche Scientifique (FRS-FNRS) and from the Australian Research Council, Grant No. DP110101663.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Hautphenne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Hautphenne, S., Latouche, G., Nguyen, G.T. (2013). Markovian Trees Subject to Catastrophes: Would They Survive Forever?. In: Latouche, G., Ramaswami, V., Sethuraman, J., Sigman, K., Squillante, M., D. Yao, D. (eds) Matrix-Analytic Methods in Stochastic Models. Springer Proceedings in Mathematics & Statistics, vol 27. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-4909-6_5

Download citation

Publish with us

Policies and ethics