Skip to main content

Is the Distance Geometry Problem in NP?

  • Chapter
  • First Online:
Distance Geometry

Abstract

Given a weighted undirected graph \(G = (V,E,d)\) with \(d : E \rightarrow {\mathbb{Q}}_{+}\) and a positive integer K, the distance geometry problem (DGP) asks to find an embedding \(x : V \rightarrow {\mathbb{R}}^{K}\) of G such that for each edge \(\{i,j\}\) we have \(\|{x}_{i} - {x}_{j}\| = {d}_{ij}\). Saxe proved in 1979 that the DGP is NP-complete with K = 1 and doubted the applicability of the Turing machine model to the case with K > 1, because the certificates for YES instances might involve real numbers. This chapter is an account of an unfortunately failed attempt to prove that the DGP is in NP for K = 2. We hope that our failure will motivate further work on the question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark, B., Colburn, C., Johnson, D.: Unit disk graph. Discrete Math. 86, 165–177 (1990)

    Google Scholar 

  2. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms, 2nd edn. Springer, Berlin (1997)

    Google Scholar 

  3. Cremona, L.: Le figure reciproche nella statica grafica. In: Bernardoni, G., Milano (1872)

    Google Scholar 

  4. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y., Morse, A.,  Anderson, B., Belhumeur, P.: Rigidity, computation, and randomization in network localization. In: IEEE Infocom Proceedings, 2673–2684 (2004)

    Google Scholar 

  5. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman and Company, New York (1979)

    Google Scholar 

  6. Graver, J.: Rigidity matroids. SIAM J. Discrete Math. 4, 355–368 (1991)

    Google Scholar 

  7. Graver, J., Servatius, B., Servatius, H.: Combinatorial rigidity. Am. Math. Soc. (1993) http://books.google.com.pe/books/about/Combinatorial_Rigidity.html?id=0XwvY1GVNN4C

  8. Hägglöf, K., Lindberg, P., Svensson, L.: Computing global minima to polynomial optimization problems using gröbner bases. J. Global Optim. 7(2), 115–125 (1995)

    Google Scholar 

  9. Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)

    Google Scholar 

  10. Henneberg, L.: Die Graphische Statik der starren Systeme. Teubner, Leipzig (1911)

    Google Scholar 

  11. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the discretizable molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Google Scholar 

  12. Levine, R., Mason, T., Brown, D.: Lex and Yacc, 2nd edn. O’Reilly, Cambridge (1995)

    Google Scholar 

  13. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res.18, 33–51 (2010)

    Google Scholar 

  14. Maplesoft, Inc.: Maple 9 Getting Started Guide. Maplesoft, Waterloo (2003) http://www.maplesoft.com/products/maple/manuals/GettingStartedGuide.pdf

  15. Maxwell, J.: On the calculation of the equilibrium and stiffness of frames. Phil. Mag. 27(182), 294–299 (1864)

    Google Scholar 

  16. Mosses, P.: Denotational semantics, In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science B: Formal Models and Semantics, pp. 575–631. Elsevier, Amsterdam (1990)

    Google Scholar 

  17. Mucherino, A., Lavor, C., Liberti, L.: The discretizable distance geometry problem. Optimization Letters, Springer: 6(8), 1671–1686 (2012)

    Google Scholar 

  18. Saviotti, C.: Nouvelles méthodes pour le calcul des travures réticulaires In: Appendix to Cremona, L., “Les figures réciproques en statique graphique”, pp. 37–100. Gauthier-Villars, Paris (1885)

    Google Scholar 

  19. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of 17th Allerton Conference in Communications, Control and Computing, pp. 480–489 (1979)

    Google Scholar 

  20. Servatius, B., Servatius, H.: Generic and abstract rigidity, In: Thorpe, M., Duxbury, P. (eds.) Rigidity Theory and Applications, Fundamental Materials Research, pp. 1–19. Springer, New York (2002) DOI: 10.1007/0-306-47089-6_1

    Google Scholar 

  21. So, A.M.C., Ye, Y.: Theory of semidefinite programming for sensor network localization. Math. Program. B 109, 367–384 (2007)

    Google Scholar 

  22. Stewart, I.: Galois Theory, 2nd edn. Chapman and Hall, London (1989)

    Google Scholar 

  23. Tay, T.S., Whiteley, W.: Generating isostatic frameworks. Structural Topology 11, 21–69 (1985)

    Google Scholar 

  24. Varignon, P.: Nouvelle Mecanique. Claude Jombert, Paris (1725)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Glusa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beeker, N., Gaubert, S., Glusa, C., Liberti, L. (2013). Is the Distance Geometry Problem in NP?. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_5

Download citation

Publish with us

Policies and ethics