Skip to main content

Distance Geometry Methods for Protein Structure Determination

  • Chapter
  • First Online:
Distance Geometry

Abstract

We review some recent advances for solving the distance geometry (DG) problems for protein structure determination. We focus on the development of a geometric buildup approach to the problems with sparse but exact distances and on the formulation of a generalized DG problem for the determination of structural ensembles with inexact distances or distance bounds. We describe the novel ideas of these approaches, show their potentials for the solution of large-scale problems in practice, and discuss their possible future developments. For some historical background, we also provide a brief introduction to the classical matrix decomposition method, the embedding algorithm, and the global smoothing algorithm for the solution of the DG problems with exact and inexact distances. Many other methods have been developed. We will not cover them all, but refer the readers to a list of papers, hoping to provide the readers with a relatively complete knowledge of the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Biswas, P., Toh, K.C., Ye, Y.: A distributed SDP approach for large-scale noisy anchor-free graph realization with applications to molecular conformation. SIAM J. Sci. Comput. 30, 1251–1277 (2008)

    Google Scholar 

  2. Blumenthal, L.M.: Theory and Applications of Distance Geometry. Oxford Clarendon Press, London (1953)

    Google Scholar 

  3. Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation. Wiley, New York (1988)

    Google Scholar 

  4. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Global. Optim. 22, 365–375 (2002)

    Google Scholar 

  5. Drenth, J.: Principals of Protein X-ray Crystallography. Springer, Berlin (2006)

    Google Scholar 

  6. Eckart, C., Young, G.: The approximation of one matrix by another of lower rank. Psychometrika 1, 211–218 (1936)

    Google Scholar 

  7. Glunt, W., Hayden, T.L., Hong, S., Wells, J.: An alternating projection algorithm for computing the nearest Euclidean distance matrix. SIAM J. Matrix. Anal. Appl. 11, 589–600 (1990)

    Google Scholar 

  8. Glunt, W., Hayden, T.L., Liu, W.: The embedding problem for predistance matrices. Bulletin of Mathematical Biology 53, 769–796 (1991)

    Google Scholar 

  9. Grosso, A., Locatelli, M., Schoen, F.: Solving molecular distance geometry problems by global optimization algorithms. Comput. Optim. Appl. 43, 23–27 (2009)

    Google Scholar 

  10. Havel, T., Distance geometry. In: Grant, D., Harris, R. (eds.) Encyclopedia of Nuclear Magnetic Resonance, pp. 1701–1710. Wiley, New York (1995)

    Google Scholar 

  11. Hendrickson, B.: Conditions for unique realizations. SIAM J. Comput. 21, 65–84 (1992)

    Google Scholar 

  12. Hendrickson, B.: The molecule problem: Exploiting structure in global optimization. SIAM J. Optim. 5, 835–857 (1995)

    Google Scholar 

  13. Hoai An, L.T., Tao, P.D.: Large scale molecular optimization from distance matrices by D.C. optimization approach. SIAM J. Optim. 14, 77–114 (2003)

    Google Scholar 

  14. Kearsly, A., Tapia, R., Trosset, M.: Solution of the metric STRESS and SSTRESS problems in multidimensional scaling by Newton’s method. Comput. Stat. 13, 369–396 (1998)

    Google Scholar 

  15. Kostrowicki, J., Piela, L.: Diffusion equation method of global optimization: performance for standard test functions. J. Optim. Theor. Appl. 69, 269–284 (1991)

    Google Scholar 

  16. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: Recent advances on the molecular distance geometry problem. Eur. J. Oper. Res. 219, 698–706 (2012)

    Google Scholar 

  17. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15, 1–17 (2008)

    Google Scholar 

  18. Liberti, L., Lavor, C., Mucherino, A., Maculan, N.: Molecular distance geometry methods: from continuous to discrete. Int. Trans. Oper. Res. 18, 33–51 (2011)

    Google Scholar 

  19. Moré, J., Wu, Z.: Global continuation for distance geometry problems. SIAM J. Optim. 7, 814–836 (1997)

    Google Scholar 

  20. Moré, J., Wu, Z.: Distance geometry optimization for protein structures. J. Global Optim. 15, 219–234 (1999)

    Google Scholar 

  21. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, New York (1990)

    Google Scholar 

  22. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (2002)

    Google Scholar 

  23. Piela, L., Kostrowicki, J., Scheraga, H.A.: The multiple-minima problem in the conformational analysis: deformation of the potential energy hyper-surface by the diffusion equation method. J. Phys. Chem. 93, 3339–3346 (1989)

    Google Scholar 

  24. Saxe, J.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of the 17th Allerton Conference in Communications, Control, and Computing, pp. 480–489 (1979)

    Google Scholar 

  25. Sit, A., Wu, Z., Yuan, Y.: A geometric buildup algorithm for the solution of the distance geometry problem using least-squares approximation. Bulletin of Mathematical Biology 71, 1914–1933 (2009)

    Google Scholar 

  26. Sit, A., Wu, Z.: Solving a generalized distance geometry problem for protein structure determination. Bulletin of Mathematical Biology 73(8), 1932–1951 (2011)

    Google Scholar 

  27. Torgerson, W.S.: Theory and Method of Scaling. Wiley, New York (1958)

    Google Scholar 

  28. Trosset, M.: Applications of multidimensional scaling to molecular conformation. Comput. Sci. Stat. 29, 148–152 (1998)

    Google Scholar 

  29. Voller, Z., Wu, Z.: Direct optimization approach to the generalized distance geometry problem, to be submitted (2012)

    Google Scholar 

  30. Wu, D., Wu, Z.: An updated geometric buildup algorithm for solving the molecular distance geometry problem with sparse distance data. J. Global Optim. 37, 321–333 (2007)

    Google Scholar 

  31. Wu, Z.: The effective energy transformation scheme as a special continuation approach to global optimization with application in molecular conformation. SIAM J. Optim. 6, 748–768 (1996)

    Google Scholar 

  32. Wüthrich, K.: NMR in Structural Biology. World Scientific, New York (1995)

    Google Scholar 

  33. Wüthrich, K.: NMR studies of structure and function of biological macromolecules. Nobel Lectures, Nobel Organizations (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Voller, Z., Wu, Z. (2013). Distance Geometry Methods for Protein Structure Determination. In: Mucherino, A., Lavor, C., Liberti, L., Maculan, N. (eds) Distance Geometry. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5128-0_8

Download citation

Publish with us

Policies and ethics