Skip to main content

Community Identification in Dynamic and Complex Networks

  • Reference work entry
  • First Online:
Encyclopedia of Social Network Analysis and Mining
  • 134 Accesses

Synonyms

Community discovery; Dense subgraph; Social networks; Weblike networks

Community:

Locally dense subgraph in large globally sparse graph

Community Identification:

Extracting a community, which a given node belongs to

Power Law:

The frequency of an event varies as a power of the event's attribute

NP:

Nondeterministic polynomial time complexity

Definition

A community may be defined informally as a locally dense subgraph, of a significant size, in a large, globally sparse graph. Communities do not exist in the classical Erdos-Renyi random graph, but they do exist in graphs representing the Internet, the World Wide Web (WWW), and numerous social and biological systems. These graphs representing the real-world complex systems are large, dynamic, and random and are termed as complex networks. At least two different questions may be posed about the community structure in large graphs: (i) Given a graph, identify or extract all (i.e., sets of nodes that constitute) communities and (ii)...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,500.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal N, Liu H, Tang L, Yu P (2012) Modeling blogger influence in a community. Soc Netw Anal Min 2: 139–162

    Google Scholar 

  • Alba RD (1973) A graph-theoretic definition of a sociometric clique. J Math Sociol 3:113–126

    MATH  MathSciNet  Google Scholar 

  • Albert R, Jeong H, Barabasi A (1999) Diameter of the world-wide web. Nature 401:130–131

    Google Scholar 

  • Caci B, Cardaci M, Tabacchi M (2011) Facebook as a small world: a topological hypothesis. Soc Netw Anal Min, 1–5

    Google Scholar 

  • Cami A, Deo N (2007) Techniques for analyzing dynamic random graph models of web-like networks: an overview. Networks 51:211–255

    MathSciNet  Google Scholar 

  • Cano P, Celma O, Koppenberger M, Buldú JM (2005) The topology of music recommendation networks. arXiv:physics/0512266v1

    Google Scholar 

  • Cano P, Koppenberger M, Wack N (2005) Content-based music audio recommendation. In: Proceedings of the 13th annual ACM international conference on Multimedia, Hilton. ACM, 1101181, pp 211–212

    Google Scholar 

  • Deo N (1974) Graph theory with applications to engineering and computer science. Prentice-Hall, Upper Saddle River

    MATH  Google Scholar 

  • Erdös P, Rényi A (1959) On random graphs. Publ Math Debr 6:290–297

    MATH  Google Scholar 

  • Flake GW, Lawrence S, Giles CL (2000) Efficient identification of web communities. In: Proceedings of the 6th ACM SIGKDD international conference on knowledge discovery and data mining, Boston. ACM, pp 150–160

    Google Scholar 

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174

    MathSciNet  Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York

    MATH  Google Scholar 

  • Goh K-I, Cusick ME, Valle D, Childs B, Vidal M, Barabási A-L (2007) The human disease network. Proc Natl Acad Sci 104:8685–8690

    Google Scholar 

  • Hu Y, Chen H, Zhang P, Li M, Di Z, Fan Y (2008) Comparative definition of community and corresponding identifying algorithm. Phys Rev E 78:026121

    Google Scholar 

  • Leskovec J, Singh A, Kleinberg J (2006) Patterns of influence in a recommendation network. Springer, Berlin/Heidelberg, pp 380–389

    Google Scholar 

  • Luccio F, Sami M (1969) On the decomposition of networks in minimally interconnected subnetworks. IEEE Trans Circuit Theory 16:184–188

    MathSciNet  Google Scholar 

  • Luce R, Perry A (1949) A method of matrix analysis of group structure. Psychometrika 14:95–116

    MathSciNet  Google Scholar 

  • Mokken RJ (1979) Cliques, clubs and clans. Qual Quant 13:161–173

    Google Scholar 

  • Newman MEJ (2001) The structure of scientific collaboration networks. Proc Natl Acad Sci USA 98:404–409

    MATH  MathSciNet  Google Scholar 

  • Newman MEJ (2003) The structure and function of complex networks. SIAM Rev 45:167–256

    MATH  MathSciNet  Google Scholar 

  • Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P (2012) Community detection in social media. Data Min Knowl Discov 24:515–554

    Google Scholar 

  • Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101:2658–2663

    Google Scholar 

  • Rajkumar B, Mukkadim P, Athena V (2008) Content delivery networks. Springer, Berlin/Heidelberg

    Google Scholar 

  • Scanlon JM, Deo N (2008) Network communities based on maximizing average degree. Congressus Numerantium 190:183–192

    MATH  MathSciNet  Google Scholar 

  • Seidman SB (1983) Network structure and minimum degree. Soc Netw 5:269–287

    MathSciNet  Google Scholar 

  • Song Y, Zhuang Z, Li H, Zhao Q, Li J, Lee W-C, Giles CL (2008) Real-time automatic tag recommendation. In: Proceedings of the 31st annual international ACM SIGIR conference on research and development in information retrieval, Singapore. ACM

    Google Scholar 

  • Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125

    Google Scholar 

  • Strogatz SH (2001) Exploring complex networks. Nature 410:268–276

    Google Scholar 

  • Vasudevan M, Balakrishnan H, Deo N (2009) Community discovery algorithms: an overview. Congressus Numerantium 196:127–142

    MATH  MathSciNet  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:440–442

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Vasudevan, M., Deo, N. (2014). Community Identification in Dynamic and Complex Networks. In: Alhajj, R., Rokne, J. (eds) Encyclopedia of Social Network Analysis and Mining. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6170-8_380

Download citation

Publish with us

Policies and ethics