Skip to main content

Algebraic Independence of Infinite Products and Their Derivatives

  • Conference paper
  • First Online:
Number Theory and Related Fields

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 43))

Abstract

For fixed rational integers q > 1, and for non-constant polynomials P with P(0) = 1 and with algebraic coefficients, we consider the infinite product \(A_{q}(z) =\prod _{k\geq 0}P({z}^{{q}^{k} })\). Using Mahler’s transcendence method, we prove results on the algebraic independence over \(\mathbb{Q}\) of the numbers \(A_{q}(\alpha ),A_{q}^\prime(\alpha ),A_{q}^{\prime\prime}(\alpha ),\ldots\) at algebraic points α with 0 < | α | < 1. The basic analytic ingredient of the proof is the hypertranscendence of the function A q (z), and we provide sufficient criteria for it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Of course, this means that every finite subset of these numbers is algebraically independent.

  2. 2.

    As usual, \(\overline{\mathbb{Q}}\) denotes the field of all complex algebraic numbers.

References

  1. M. Amou, Algebraic independence of the values of certain functions at a transcendental number. Acta Arith. 59, 71–82 (1991)

    MathSciNet  MATH  Google Scholar 

  2. P. Bundschuh, Transcendence and algebraic independence of series related to Stern’s sequence. Int. J. Number Theory 8, 361–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Coons, The transcendence of series related to Stern’s diatomic sequence. Int. J. Number Theory 6, 211–217 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Dekking, Transcendance du nombre de Thue-Morse. C. R. Acad. Sci. Paris Sér. A 285, 157–160 (1977)

    MathSciNet  MATH  Google Scholar 

  5. J.H. Loxton, A.J. van der Poorten, Arithmetic properties of the solutions of a class of functional equations. J. Reine Angew. Math. 330, 159–172 (1982)

    MathSciNet  MATH  Google Scholar 

  6. K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen. Math. Ann. 101, 342–366 (1929)

    Article  MathSciNet  MATH  Google Scholar 

  7. K. Mahler, Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen. Math. Z. 32, 545–585 (1930)

    Article  MathSciNet  MATH  Google Scholar 

  8. K. Mahler, On the generating function of the integers with a missing digit. J. Indian Math. Soc. (N.S.) A 15, 33–40 (1951)

    Google Scholar 

  9. Ke. Nishioka, A note on differentially algebraic solutions of first order linear difference equations. Aequationes Math. 27, 32–48 (1984)

    Google Scholar 

  10. Ke. Nishioka, Ku. Nishioka, Algebraic independence of functions satisfying a certain system of functional equations. Funkcial. Ekvac. 37, 195–209 (1994)

    Google Scholar 

  11. Ku. Nishioka, New approach in Mahler’s method. J. Reine Angew. Math. 407, 202–219 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Ku. Nishioka, Mahler Functions and Transcendence. LNM, vol 1631 (Springer, Berlin, 1996)

    Google Scholar 

  13. G. Szegő, Über Potenzreihen mit endlich vielen verschiedenen Koeffizienten. Sitz.ber. preuß. Akad. Wiss. Math.-Phys. Kl. 1922, 88–91 (1922)

    Google Scholar 

  14. Y. Tachiya, Transcendence of certain infinite products. J. Number Theory 125, 182–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Toshimitsu, Strongly q-additive functions and algebraic independence. Tokyo J. Math. 21, 107–113 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bundschuh .

Editor information

Editors and Affiliations

Additional information

To the memory of Alf van der Poorten

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this paper

Cite this paper

Bundschuh, P. (2013). Algebraic Independence of Infinite Products and Their Derivatives. In: Borwein, J., Shparlinski, I., Zudilin, W. (eds) Number Theory and Related Fields. Springer Proceedings in Mathematics & Statistics, vol 43. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6642-0_6

Download citation

Publish with us

Policies and ethics