Skip to main content

On Small Size Approximation Models

  • Chapter
  • First Online:
The Mathematics of Paul Erdős I
  • 2190 Accesses

Summary

In this paper we continue the study of the method of approximations in Boolean complexity. We introduce a framework which naturally generalizes previously known ones. The main result says that in this framework there exist approximation models providing in principle exponential lower bounds for almost all Boolean functions, and such that the number of testing functionals is only singly exponential in the number of variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions. Combinatorica, 7(1):1–22, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. A. Barrington. A note on a theorem of Razborov. Technical report, University of Massachusetts, 1986.

    Google Scholar 

  3. R. B. Boppana and M. Sipser. The complexity of finite functions. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, vol. A (Algorithms and Complexity), chapter 14, pages 757–804. Elsevier Science Publishers B.V. and The MIT Press, 1990.

    Google Scholar 

  4. M. Karchmer. On proving lower bounds for circuit size. In Proceedings of the 8th Structure in Complexity Theory Annual Conference, pages 112–118, 1993.

    Google Scholar 

  5. M. Karchmer and A. Wigderson. Characterizing non-deterministic circuit size. In Proceedings of the 25th Annual ACM Symposium on the Theory of Computing, pages 532–540, 1993.

    Google Scholar 

  6. M. Karchmer and A. Wigderson. On span programs. In Proceedings of the 8th Structure in Complexity Theory Annual Conference, pages 102–111, 1993.

    Google Scholar 

  7. C. Meinel. Modified Branching Programs and Their Computational Power, Lecture Notes in Computer Science, 370. Springer-Verlag, New York/Berlin, 1989.

    Google Scholar 

  8. K. Nakayama and A. Maruoka. Loop circuits and their relation to Razborov’s approximation model. Manuscript, 1992.

    Google Scholar 

  9. A. Razborov. On the method of approximation. In Proceedinqs of the 21st ACM Symposium on Theory of Computing, pages 167–176, 1989.

    Google Scholar 

  10. A. Razborov. Bounded Arithmetic and lower bounds in Boolean complexity. To appear in the volume Feasible Mathematics II, 1993.

    Google Scholar 

  11. R. Smolensky. Algebraic methods in the theory of lower bounds for Boolean circuit complexity. In Proceedings of the 19th ACM Symposium on Theory of Computing, pages 77–82, 1987.

    Google Scholar 

  12. É. Tardos. The gap between monotone and nonmonotone circuit complexity is exponential. Combinatorica, 8:141–142, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Wigderson. The fusion method for lower bounds in circuit complexity. In Combinatorics, Paul Erdos is Eighty. 1993.

    Google Scholar 

  14. A. E. Andreev. Ob odnom metode poluqeni  ninih ocenok slonosti individualnyh monotonnyh funkci. DAN CCCP, 282(5):1033–1037, 1985. A.E. Andreev, On a method for obtaining lower bounds for the complexity of individual monotone functions. Soviet Math. Dokl. 31(3):530–534, 1985.

    Google Scholar 

  15. A. E. Andreev. Ob odnom metode poluqeni  ffektivnyh ninih ocenok monotonno slonosti. Algebra ì logika, 26(1):3–21, 1987: A.E. Andreev, On one method of obtaining effective lower bounds of monotone complexity. Algebra i logika, 26(1):3–21, 1987. In Russian.

    Google Scholar 

  16. A. A. Razborov. Ninie ocenki monotonno slo nosti nekotoryh bulevyh funkci. DAN CCCP, 281(4):798–801, 1985. A. A. Razborov, Lower bounds for the monotone complexity of some Boolean functions, Soviet Math. Dokl., 31:354–357, 1985.

    Google Scholar 

  17. A. A. Razborov. Ninie ocenki monotonno slonosti logiqeskogo permanenta. Mamem 3am., 37(6):887–900, 1985. A. A. Razborov, Lower bounds of monotone complexity of the logical permanent function, Mathem. Notes of the Academy of Sci. of the USSR, 37:485–493, 1985.

    Google Scholar 

  18. A. A. Razborov. Ninie ocenki razmera shem ograniqenno glubiny v polnom bazise, soderawem funkci  logiqeskogo sloeni. Mamem 3am., 41(4):598- 607, 1987. A. A. Razborov, Lower bounds on the size of bounded-depth networks over a complete basis with logical addition, Mathem. Notes of the Academy of Sci. of the USSR, 41(4):333–338, 1987.

    Google Scholar 

  19. A. A. Razborov. Ninie ocenki slonosti realizacii simmetriqeskih bulevyh funkci kontaktno-ventilnymi shemami. Matem, 3am., 48(6):79–91, 1990. A. A. Razborov, Lower bounds on the size of switching-and-rectifier networks for symmetric Boolean functions, Mathem. Notes of the Academy of Sci. of the USSR.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Razborov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Razborov, A.A. (2013). On Small Size Approximation Models. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_26

Download citation

Publish with us

Policies and ethics