Skip to main content

Did Erdős Save Western Civilization?

  • Chapter
  • First Online:
The Mathematics of Paul Erdős I
  • 2385 Accesses

Abstract

If you stand on the famous Chain bridge in Budapest, you will see below you the broad sweep of the Danube. But this broad river arose from the confluence of many small streams. Indeed, there is a point near St. Moritz, where if a rain drop happens to fall a few centimeters to the north, it will make its way into the Rhine, and so to the North Sea. If it falls a little to the west, it will join the Adda and the Po, and end up in the Adriatic, whereas to the east it would run into the Inn, the Danube, and the Black Sea. An apparently negligible movement at the start can make a difference of hundreds of kilometers later on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brooks, R. L., Smith, C. A. B., Stone, A. H., Tutte, W. T. (1940): The Dissection of Rectangles into Squares. Duke Math. J. 7, 312–340.

    Article  MathSciNet  Google Scholar 

  2. Kirchhoff, G. (1847): Ueber die Auflősung der Gleichungen, auf welche man bei der Untersüchung der linearen Vertheilung galvanischer Strőme geführt wird. Annalen der Physik und Chemie 72, 497–.

    Google Scholar 

  3. Moroń, Z. (1925): 0 rozkladach prostokatów na kwadraty: Przegla̧d Matematyczno-Fizyczny 3 152–153.

    Google Scholar 

  4. Skinner, J. D. (II) (1993): Squared Squares, Who’s Who and What’s What. Lincoln, Nebraska, J. D. Skinner.

    Google Scholar 

  5. Smith, C. A. B. (1972): Electric Currents in Regular Matroids. In Welsh, D. J. A, and Woodall, D. R., eds., Combinatorics, 262–284, Southend-on-sea, Institute of Mathematics and Applications.

    Google Scholar 

  6. Smith, C. A. B. (1974): Patroids. Journal of Combinatorial Theory 16, 64–76.

    Article  MATH  Google Scholar 

  7. Sprague, R. P. (1939): Beispiel einer Zerlegung der Quadrats in lauter ver-schiedene Quadrate. Matematische Zeitschrift 45, 607–608.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Smith, C.A.B. (2013). Did Erdős Save Western Civilization?. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_5

Download citation

Publish with us

Policies and ethics