Abstract
If you stand on the famous Chain bridge in Budapest, you will see below you the broad sweep of the Danube. But this broad river arose from the confluence of many small streams. Indeed, there is a point near St. Moritz, where if a rain drop happens to fall a few centimeters to the north, it will make its way into the Rhine, and so to the North Sea. If it falls a little to the west, it will join the Adda and the Po, and end up in the Adriatic, whereas to the east it would run into the Inn, the Danube, and the Black Sea. An apparently negligible movement at the start can make a difference of hundreds of kilometers later on.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brooks, R. L., Smith, C. A. B., Stone, A. H., Tutte, W. T. (1940): The Dissection of Rectangles into Squares. Duke Math. J. 7, 312–340.
Kirchhoff, G. (1847): Ueber die Auflősung der Gleichungen, auf welche man bei der Untersüchung der linearen Vertheilung galvanischer Strőme geführt wird. Annalen der Physik und Chemie 72, 497–.
Moroń, Z. (1925): 0 rozkladach prostokatów na kwadraty: Przegla̧d Matematyczno-Fizyczny 3 152–153.
Skinner, J. D. (II) (1993): Squared Squares, Who’s Who and What’s What. Lincoln, Nebraska, J. D. Skinner.
Smith, C. A. B. (1972): Electric Currents in Regular Matroids. In Welsh, D. J. A, and Woodall, D. R., eds., Combinatorics, 262–284, Southend-on-sea, Institute of Mathematics and Applications.
Smith, C. A. B. (1974): Patroids. Journal of Combinatorial Theory 16, 64–76.
Sprague, R. P. (1939): Beispiel einer Zerlegung der Quadrats in lauter ver-schiedene Quadrate. Matematische Zeitschrift 45, 607–608.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer Science+Business Media New York
About this chapter
Cite this chapter
Smith, C.A.B. (2013). Did Erdős Save Western Civilization?. In: Graham, R., Nešetřil, J., Butler, S. (eds) The Mathematics of Paul Erdős I. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7258-2_5
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7258-2_5
Published:
Publisher Name: Springer, New York, NY
Print ISBN: 978-1-4614-7257-5
Online ISBN: 978-1-4614-7258-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)