Skip to main content

Music Processing in the Brain

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Music perception involves acoustic analysis, auditory memory, auditory scene analysis, processing of interval relations and of musical syntax and semantics, and activation of (pre)motor representations of actions. Moreover, music perception potentially elicits emotions, thus giving rise to the modulation of emotional effector systems such as the autonomic nervous system, the hormonal system, and the immune system. EEG and fMRI studies inform us about the time course of the processes underlying music perception, as well as about where in the brain these processes might be located.

Detailed Description

Introduction

Music has been proven to be a valuable tool for the understanding of human cognition, human emotion, and their underlying brain mechanisms. Music is part of the human nature: It appears that throughout human history, in every human culture, people have played and enjoyed music. The oldest musical instruments discovered so far are around 30,000–40,000 years old...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alain C, Woods DL, Knight RT (1998) A distributed cortical network for auditory sensory memory in humans. Brain Res 812:23–37

    PubMed  CAS  Google Scholar 

  • Alho K, Tervaniemi M, Huotilainen M, Lavikainen J, Tiitinen H, Ilmoniemi RJ (1996) Processing of complex sounds in the human auditory cortex as revealed by magnetic brain responses. Psychophysiology 33(4):369–375

    PubMed  CAS  Google Scholar 

  • Alperson P (1994) What is music? An introduction to the philosophy of music. Pennsylvania State University Press, University Park

    Google Scholar 

  • Amunts K, Lenzen M, Friederici A, Schleicher A, Morosan P, Palomero-Gallagher N (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9):e1000489

    PubMed Central  PubMed  Google Scholar 

  • Bangert M, Altenmüller E (2003) Mapping perception to action in piano practice: a longitudinal dc-eeg study. BMC Neurosci 4(1):26

    PubMed Central  PubMed  Google Scholar 

  • Baumeister R, Leary M (1995) The need to belong: desire for interpersonal attachments as a fundamental human motivation. Psychol Bull 117(3):497–497

    PubMed  CAS  Google Scholar 

  • Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436(7054):1161–1165

    PubMed Central  PubMed  CAS  Google Scholar 

  • Berti S, Schröger E (2003) Working memory controls involuntary attention switching: evidence from an auditory distraction paradigm. Eur J Neurosci 17(5):1119–1122

    PubMed  Google Scholar 

  • Besson M, Faita F (1995) An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J Exp Psychol Hum Percept Perform 21(6):1278–1296

    Google Scholar 

  • Besson M, Macar F (1986) Visual and auditory event-related potentials elicited by linguistic and non-linguistic incongruities. Neurosci Lett 63(2):109–114

    PubMed  CAS  Google Scholar 

  • Besson M, Schön D (2001) Comparison between language and music. In: Zatorre RJ, Peretz I (eds) The biological foundations of music, vol 930. The New York Academy of Sciences, New York, pp 232–258

    Google Scholar 

  • Besson M, Faita F, Peretz I, Bonnel AM, Requin J (1998) Singing in the brain: Independence of lyrics and tunes. Psychol Sci 9(6):494–498

    Google Scholar 

  • Bigand E, Parncutt R, Lerdahl J (1996) Perception of musical tension in short chord sequences: the influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Percept Psychophys 58(1):125–141

    Google Scholar 

  • Block N (2005) Two neural correlates of consciousness. Trends Cogn Sci 9(2):46–52

    PubMed  Google Scholar 

  • Blood A, Zatorre R (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci 98(20):11818

    PubMed Central  PubMed  CAS  Google Scholar 

  • Brattico E, Tervaniemi M, Naatanen R, Peretz I (2006) Musical scale properties are automatically processed in the human auditory cortex. Brain Res 1117(1):162–174

    PubMed  CAS  Google Scholar 

  • Bregman A (1994) Auditory scene analysis: the perceptual organization of sound. MIT Press, Cambridge

    Google Scholar 

  • Budd M (1996) Values of art. Penguin Books, London

    Google Scholar 

  • Callan D, Tsytsarev V, Hanakawa T, Callan A, Katsuhara M, Fukuyama H (2006) Song and speech: brain regions involved with perception and covert production. Neuroimage 31(3):1327–1342

    PubMed  Google Scholar 

  • Cardoso S, Coimbra N, Brandão M (1994) Defensive reactions evoked by activation of NMDA receptors in distinct sites of the inferior colliculus. Behav Brain Res 63(1):17–24

    PubMed  CAS  Google Scholar 

  • Carlyon R (2004) How the brain separates sounds. Trends Cogn Sci 8(10):465–471

    PubMed  Google Scholar 

  • Conard N, Malina M, Münzel S (2009) New flutes document the earliest musical tradition in southwestern Germany. Nature 460(7256):737–740

    PubMed  CAS  Google Scholar 

  • Cook N (1987) The perception of large-scale tonal closure. Music Percept 5(2):197–205

    Google Scholar 

  • Cross I (2008) The evolutionary nature of musical meaning. Musicae Sci 179–200

    Google Scholar 

  • Cross I, Morley I (2008) The evolution of music: theories, definitions and the nature of the evidence. In: Malloch S, Trevarthen C (eds) Communicative musicality: exploring the basis of human companionship. Oxford University Press, Oxford, pp 61–82

    Google Scholar 

  • Daltrozzo J, Schön D (2009a) Conceptual processing in music as revealed by N400 effects on words and musical targets. J Cogn Neurosci 21(10):1882–1892

    PubMed  Google Scholar 

  • Daltrozzo J, Schön D (2009b) Is conceptual processing in music automatic? An electrophysiological approach. Brain Res 1270:88–94

    PubMed  CAS  Google Scholar 

  • Darwin C (1997) Auditory grouping. Trends Cogn Sci 1(9):327–333

    PubMed  CAS  Google Scholar 

  • Darwin C (2008) Listening to speech in the presence of other sounds. Philos Trans R Soc B Biol Sci 363(1493):1011

    CAS  Google Scholar 

  • Davies S (1994) Musical meaning and expression. Cornell University Press, Ithaca

    Google Scholar 

  • Deouell L (2007) The frontal generator of the mismatch negativity revisited. J Psychophys 21(3/4):188

    Google Scholar 

  • Deutsch D, Henthorn T, Lapidis R (2011) Illusory transformation from speech to song. J Acoust Soc Am 129(4):2245–2252

    PubMed  Google Scholar 

  • Di Pietro M, Laganaro M, Leemann B, Schnider A (2004) Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia 42(7):868–877

    PubMed  Google Scholar 

  • Doeller C, Opitz B, Mecklinger A, Krick C, Reith W, Schröger E (2003) Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence. Neuroimage 20(2):1270–1282

    PubMed  Google Scholar 

  • Donchin E, Coles MGH (1998) Context updating and the p300. Behav Brain Sci 21(1):152

    Google Scholar 

  • Drost U, Rieger M, Brass M, Gunter T, Prinz W (2005a) Action-effect coupling in pianists. Psychol Res 69(4):233–241

    PubMed  Google Scholar 

  • Drost U, Rieger M, Brass M, Gunter T, Prinz W (2005b) When hearing turns into playing: movement induction by auditory stimuli in pianists. Q J Exp Psychol Sect A 58(8):1376–1389

    Google Scholar 

  • Ethofer T, Kreifelts B, Wiethoff S, Wolf J, Grodd W, Vuilleumier P (2009) Differential influences of emotion, task, and novelty on brain regions underlying the processing of speech melody. J Cogn Neurosci 21(7):1255–1268

    PubMed  Google Scholar 

  • Fazio P, Cantagallo A, Craighero L, D’Ausilio A, Roy A, Pozzo T (2009) Encoding of human action in Broca’s area. Brain 132(7):1980

    PubMed  Google Scholar 

  • Fedorenko E, Patel A, Casasanto D, Winawer J, Gibson E (2009) Structural integration in language and music: evidence for a shared system. Memory Cogn 37(1):1

    Google Scholar 

  • Fitch W (2006) The biology and evolution of music: a comparative perspective. Cognition 100(1):173–215

    PubMed  Google Scholar 

  • Fitch W, Hauser M (2004) Computational constraints on syntactic processing in a nonhuman primate. Science 303(5656):377

    PubMed  CAS  Google Scholar 

  • Fodor J, Mann V, Samuel A (1991) Panel discussion: the modularity of speech and language. In: Modularity and the motor theory of speech perception: proceedings of a conference to honor. Alvin M. Liberman, p 359

    Google Scholar 

  • Friederici A (2002) Towards a neural basis of auditory sentence processing. Trends Cogn Sci 6(2):78–84

    PubMed  Google Scholar 

  • Friederici A (2004) Processing local transitions versus long-distance syntactic hierarchies. Trends Cogn Sci 8(6):245–247

    PubMed  Google Scholar 

  • Friederici A, Bahlmann J, Heim S, Schubotz R, Anwander A (2006) The brain differentiates human and non-human grammars: functional localization and structural connectivity. Proc Natl Acad Sci 103(7):2458

    PubMed Central  PubMed  CAS  Google Scholar 

  • Friedrich R, Friederici A (2009) Mathematical logic in the human brain: syntax. PLoS ONE 4(5):e5599

    PubMed Central  PubMed  Google Scholar 

  • Fujioka T, Trainor L, Ross B, Kakigi R, Pantev C (2004) Musical training enhances automatic encoding of melodic contour and interval structure. J Cogn Neurosci 16(6):1010–1021

    PubMed  Google Scholar 

  • Fujioka T, Trainor L, Ross B, Kakigi R, Pantev C (2005) Automatic encoding of polyphonic melodies in musicians and nonmusicians. J Cogn Neurosci 17(10):1578–1592

    PubMed  Google Scholar 

  • Geisler C (1998) From sound to synapse: physiology of the mammalian ear. Oxford University Press, New York

    Google Scholar 

  • Giard M, Perrin F, Pernier J (1990) Brain generators implicated in processing of auditory stimulus deviance. A topographic ERP study. Psychophysiology 27:627–640

    PubMed  CAS  Google Scholar 

  • Grahn J, Brett M (2007) Rhythm and beat perception in motor areas of the brain. J Cogn Neurosci 19(5):893–906

    PubMed  Google Scholar 

  • Grewe O, Nagel F, Kopiez R, Altenmüller E (2007a) Emotions over time: synchronicity and development of subjective, physiological, and facial affective reactions of music. Emotion 7(4):774–788

    PubMed  Google Scholar 

  • Grewe O, Nagel F, Kopiez R, Altenmüller E (2007b) Listening to music as a re-creative process: physiological, psychological, and psychoacoustical correlates of chills and strong emotions. Music Percept 24(3):297–314

    Google Scholar 

  • Grieser-Painter J, Koelsch S (2011) Can out-of-context musical sounds convey meaning? An ERP study on the processing of meaning in music. Psychophysiology 48(5):645–655

    Google Scholar 

  • Griffiths T, Warren J (2002) The planum temporale as a computational hub. TRENDS Neurosci 25(7):348–353

    PubMed  CAS  Google Scholar 

  • Griffiths T, Warren J (2004) What is an auditory object? Nat Rev Neurosci 5(11):887–892

    PubMed  CAS  Google Scholar 

  • Groussard M, Viader F, Landeau B, Desgranges B, Eustache F, Platel H (2009) Neural correlates underlying musical semantic memory. Ann N Y Acad Sci 1169(1):278–281

    PubMed Central  PubMed  CAS  Google Scholar 

  • Groussard M, Viader F, Hubert V, Landeau B, Abbas A, Desgranges B (2010) Musical and verbal semantic memory: two distinct neural networks? Neuroimage 49(3):2764–2773

    PubMed  CAS  Google Scholar 

  • Gunter T, Friederici A, Schriefers H (2000) Syntactic gender and semantic expectancy: ERPs reveal early autonomy and late interaction. J Cogn Neurosci 12(4):556–568

    PubMed  CAS  Google Scholar 

  • Hackett TA, Kaas J (2004) Auditory cortex in primates: functional subdivisions and processing streams. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, pp 215–232

    Google Scholar 

  • Haueisen J, Knösche T (2001) Involuntary motor activity in pianists evoked by music perception. J Cogn Neurosci 13(6):786–792

    PubMed  CAS  Google Scholar 

  • Herbert C, Ethofer T, Anders S, Junghofer M, Wildgruber D, Grodd W (2009) Amygdala activation during reading of emotional adjectives – an advantage for pleasant content. Soc Cogn Affect Neurosci 4(1):35

    PubMed Central  PubMed  Google Scholar 

  • Herrojo-Ruiz M, Jabusch H, Altenmüller E (2009) Detecting wrong notes in advance: neuronal correlates of error monitoring in pianists. Cereb Cortex 19(11):2625

    Google Scholar 

  • Herrojo-Ruiz M, Strübing F, Jabusch HC, Altenmüller E (2010) EEG oscillatory patterns are associated with error prediction during music performance and are altered in musician’s dystonia. Neuroimage 55:1791–1803

    Google Scholar 

  • Hickok G, Buchsbaum B, Humphries C, Muftuler T (2003) Auditory-motor interaction revealed by fMRI: speech, music, and working memory in area Spt. J Cogn Neurosci 15(5):673–682

    PubMed  Google Scholar 

  • Hucklebridge F, Lambert S, Clow A, Warburton D, Evans P, Sherwood N (2000) Modulation of secretory immunoglobulin A in saliva; response to manipulation of mood. Biol Psychol 53(1):25–35

    PubMed  CAS  Google Scholar 

  • Huffman R, Henson O (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Rev 15(3):295–323

    PubMed  CAS  Google Scholar 

  • Hyde K, Peretz I, Zatorre R (2008) Evidence for the role of the right auditory cortex in fine pitch resolution. Neuropsychologia 46(2):632–639

    PubMed  Google Scholar 

  • Janata P, Grafton ST (2003) Swinging in the brain: shared neural substrates for behaviors related to sequencing and music. Nat Neurosci 6(7):682–687

    PubMed  CAS  Google Scholar 

  • Janata P, Birk J, Van Horn J, Leman M, Tillmann B, Bharucha J (2002a) The cortical topography of tonal structures underlying Western music. Science 298(5601):2167

    PubMed  CAS  Google Scholar 

  • Janata P, Tillmann B, Bharucha J (2002b) Listening to polyphonic music recruits domain-general attention and working memory circuits. Cogn Affect Behav Neurosci 2(2):121

    PubMed  Google Scholar 

  • Jäncke L (2008) Music, memory and emotion. J Biol 7(6):21

    PubMed Central  PubMed  Google Scholar 

  • Johnson K, Nicol T, Zecker S, Kraus N (2008) Developmental plasticity in the human auditory brainstem. J Neurosci 28(15):4000

    PubMed Central  PubMed  CAS  Google Scholar 

  • Johnsrude I, Penhune V, Zatorre R (2000) Functional specificity in the right human auditory cortex for perceiving pitch direction. Brain 123(1):155

    PubMed  Google Scholar 

  • Jusczyk P (1999) How infants begin to extract words from speech. Trends Cogn Sci 3(9):323–328

    PubMed  Google Scholar 

  • Juslin P, Laukka P (2003) Communication of emotions in vocal expression and music performance: different channels, same code? Psychol Bull 129(5):770–814

    PubMed  Google Scholar 

  • Kaas J, Hackett T (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 97(22):11793

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kaas J, Hackett T, Tramo M (1999) Auditory processing in primate cerebral cortex. Curr Opin Neurobiol 9(2):164–170

    PubMed  CAS  Google Scholar 

  • Kamiyama K, Katahira K, Abla D, Hori K, Okanoya K (2010) Music playing and memory trace: evidence from event-related potentials. Neurosci Res 67(4):334–340

    PubMed  Google Scholar 

  • Karbusicky V (1986) Grundriß der musikalischen Semantik. Wissenschaftliche Buchgesellschaft, Darmstadt

    Google Scholar 

  • Katahira K, Abla D, Masuda S, Okanoya K (2008) Feedback-based error monitoring processes during musical performance: an ERP study. Neurosci Res 61(1):120–128

    PubMed  Google Scholar 

  • Khalfa S, Isabelle P, Jean-Pierre B, Manon R (2002) Event-related skin conductance responses to musical emotions in humans. Neurosci Lett 328(2):145–149

    PubMed  CAS  Google Scholar 

  • Kirschner S, Tomasello M (2009) Joint drumming: social context facilitates synchronization in preschool children. J Exp Child Psychol 102(3):299–314

    PubMed  Google Scholar 

  • Knösche T, Neuhaus C, Haueisen J, Alter K, Maess B, Witte O (2005) Perception of phrase structure in music. Hum Brain Mapp 24(4):259–273

    PubMed  Google Scholar 

  • Koch M, Lingenhöhl K, Pilz P (1992) Loss of the acoustic startle response following neurotoxic lesions of the caudal pontine reticular formation: possible role of giant neurons. Neuroscience 49(3):617–625

    PubMed  CAS  Google Scholar 

  • Koechlin E, Jubault T (2006) Broca’s area and the hierarchical organization of human behavior. Neuron 50(6):963–974

    PubMed  CAS  Google Scholar 

  • Koelsch S (2000) Brain and music – a contribution to the investigation of central auditory processing with a new electrophysiological approach. Risse, Leipzig

    Google Scholar 

  • Koelsch S (2004) Spatio-temporal aspects of processing syntax and semantics in music. Habilitation thesis, University of Leipzig

    Google Scholar 

  • Koelsch S (2009a) Music-syntactic processing and auditory memory: similarities and differences between ERAN and MMN. Psychophysiology 46(1):179–190

    PubMed  Google Scholar 

  • Koelsch S (2009b) A neuroscientific perspective on music therapy. Ann N Y Acad Sci 1169(The Neurosciences and Music III Disorders and Plasticity):374–384

    PubMed  Google Scholar 

  • Koelsch S (2011) Towards a neural basis of processing musical semantics. Phys Life Rev 8(2):89–105

    PubMed  Google Scholar 

  • Koelsch S (2012) Brain and music. Wiley, Chichester

    Google Scholar 

  • Koelsch S (2014) Brain correlates of music-evoked emotions. Nat Rev Neurosci 15(3):170–180

    PubMed  CAS  Google Scholar 

  • Koelsch S, Jentschke S (2010) Differences in electric brain responses to melodies and chords. J Cogn Neurosci 22(10):2251–2262

    PubMed  Google Scholar 

  • Koelsch S, Mulder J (2002) Electric brain responses to inappropriate harmonies during listening to expressive music. Clin Neurophysiol 113(6):862–869

    PubMed  Google Scholar 

  • Koelsch S, Siebel W (2005) Towards a neural basis of music perception. Trends Cogn Sci 9(12):578–584

    PubMed  Google Scholar 

  • Koelsch S, Schröger E, Tervaniemi M (1999) Superior pre-attentive auditory processing in musicians. NeuroReport 10(6):1309

    PubMed  CAS  Google Scholar 

  • Koelsch S, Gunter TC, von Cramon DY, Zysset S, Lohmann G, Friederici AD (2002) Bach speaks: a cortical “language-network” serves the processing of music. Neuroimage 17:956–966

    PubMed  Google Scholar 

  • Koelsch S, Kasper E, Sammler D, Schulze K, Gunter TC, Friederici AD (2004) Music, language, and meaning: brain signatures of semantic processing. Nat Neurosci 7(3):302–307

    PubMed  CAS  Google Scholar 

  • Koelsch S, Fritz T, Schulze K, Alsop D, Schlaug G (2005a) Adults and children processing music: an fMRI study. Neuroimage 25(4):1068–1076

    PubMed  Google Scholar 

  • Koelsch S, Gunter T, Wittfoth M, Sammler D (2005b) Interaction between syntax processing in language and in music: an ERP study. J Cogn Neurosci 17(10):1565–1577

    PubMed  Google Scholar 

  • Koelsch S, Schulze K, Sammler D, Fritz T, Müller K, Gruber O (2009) Functional architecture of verbal and tonal working memory: an FMRI study. Human Brain Mapp 30(3):859–873

    Google Scholar 

  • Koelsch S, Offermanns K, Franzke P (2010) Music in the treatment of affective disorders: an exploratory investigation of a new method for music-therapeutic research. Music Percept 27(4):307–316

    Google Scholar 

  • Koelsch S, Rohrmeier M, Torrecuso R, Jentschke S (2013) Processing of hierarchical syntactic structure in music. Proc Natl Acad Sci 110(38):15443–15448

    PubMed Central  PubMed  CAS  Google Scholar 

  • Koopman C, Davies S (2001) Musical meaning in a broader perspective. J Aesthet Art Crit 59(3):261–273

    Google Scholar 

  • Korzyukov O, Winkler I, Gumenyuk V, Alho K (2003) Processing abstract auditory features in the human auditory cortex. Neuroimage 20(4):2245–2258

    PubMed  Google Scholar 

  • Kreutz G, Bongard S, Rohrmann S, Hodapp V, Grebe D (2004) Effects of choir singing or listening on secretory immunoglobulin A, cortisol, and emotional state. J Behav Med 27(6):623–635

    PubMed  Google Scholar 

  • Lahav A, Saltzman E, Schlaug G (2007) Action representation of sound: audiomotor recognition network while listening to newly acquired actions. J Neurosci 27(2):308–314

    PubMed  CAS  Google Scholar 

  • Lamprea M, Cardenas F, Vianna D, Castilho V, Cruz-Morales S, Brandão M (2002) The distribution of fos immunoreactivity in rat brain following freezing and escape responses elicited by electrical stimulation of the inferior colliculus. Brain Res 950(1–2):186–194

    PubMed  CAS  Google Scholar 

  • Langner G, Ochse M (2006) The neural basis of pitch and harmony in the auditory system. Musicae Scientiae 10(I):185

    Google Scholar 

  • Lau E, Phillips C, Poeppel D (2008) A cortical network for semantics: (de)constructing the n400. Nat Rev Neurosci 9(12):920–933

    PubMed  CAS  Google Scholar 

  • LeDoux J (2000) Emotion circuits in the brain. Ann Rev Neurosci 23:155–184

    PubMed  CAS  Google Scholar 

  • Lerdahl F (2001) Tonal pitch space. Oxford University Press, New York

    Google Scholar 

  • Lerdahl F, Jackendoff R (1999) A generative theory of music. MIT, Cambridge

    Google Scholar 

  • Lerdahl F, Krumhansl C (2007) Modeling tonal tension. Music Percept 24(4):329–366

    Google Scholar 

  • Levitt P, Moore R (1979) Origin and organization of brainstem catecholamine innervation in the rat. J Comp Neurol 186(4):505–528

    PubMed  CAS  Google Scholar 

  • Liberman A, Mattingly I (1985) The motor theory of speech perception revised. Cognition 21(1):1–36

    PubMed  CAS  Google Scholar 

  • Liebenthal E, Ellingson M, Spanaki M, Prieto T, Ropella K, Binder J (2003) Simultaneous ERP and fMRI of the auditory cortex in a passive oddball paradigm. Neuroimage 19(4):1395–1404

    PubMed  Google Scholar 

  • Liegeois-Chauvel C, Peretz I, Babaie M, Laguitton V, Chauvel P (1998) Contribution of different cortical areas in the temporal lobes to music processing. Brain 121(10):1853–1867

    PubMed  Google Scholar 

  • Longoni F, Grande M, Hendrich V, Kastrau F, Huber W (2005) An fMRI study on conceptual, grammatical, and morpho-phonological processing. Brain Cogn 57(2):131–134

    PubMed  Google Scholar 

  • Lundqvist L, Carlsson F, Hilmersson P, Juslin P (2009) Emotional responses to music: experience, expression, and physiology. Psychol Music 37(1):61

    Google Scholar 

  • Maess B, Koelsch S, Gunter TC, Friederici AD (2001) Musical syntax is processed in the area of Broca: an MEG-study. Nat Neurosci 4(5):540–545

    PubMed  CAS  Google Scholar 

  • Maess B, Jacobsen T, Schröger E, Friederici A (2007) Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change. Neuroimage 37(2):561–571

    PubMed  Google Scholar 

  • Maidhof C, Koelsch S (2011) Effects of selective attention on syntax processing in music and language. J Cogn Neurosci 23(9):2252–2267

    PubMed  Google Scholar 

  • Maidhof C, Rieger M, Prinz W, Koelsch S (2009) Nobody is perfect: ERP effects prior to performance errors in musicians indicate fast monitoring processes. PLoS One 4(4):e5032

    PubMed Central  PubMed  Google Scholar 

  • Maidhof C, Vavatzanidis N, Prinz W, Rieger M, Koelsch S (2010) Processing expectancy violations during music performance and perception: an ERP study. J Cogn Neurosci 22(10):2401–2413

    PubMed  Google Scholar 

  • Makuuchi M, Bahlmann J, Anwander A, Friederici A (2009) Segregating the core computational faculty of human language from working memory. Proc Natl Acad Sci 106(20):8362

    PubMed Central  PubMed  CAS  Google Scholar 

  • McCraty R, Atkinson M, Rein G, Watkins A (1996) Music enhances the effect of positive emotional states on salivary IgA. Stress Med 12(3):167–175

    Google Scholar 

  • Menning H, Roberts L, Pantev C (2000) Plastic changes in the auditory cortex induced by intensive frequency discrimination training. Neuroreport 11(4):817

    PubMed  CAS  Google Scholar 

  • Meyer L (1956) Emotion and meaning in music. University of Chicago Press, Chicago

    Google Scholar 

  • Meyer M, Alter K, Friederici A, Lohmann G, Cramon D (2002) FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Hum Brain Mapp 17(2):73–88

    PubMed  Google Scholar 

  • Meyer M, Steinhauer K, Alter K, Friederici A, Cramon D (2004) Brain activity varies with modulation of dynamic pitch variances in sentence melody. Brain Lang 89:277–289

    PubMed  Google Scholar 

  • Miranda R, Ullman M (2007) Double dissociation between rules and memory in music: an event-related potential study. Neuroimage 38(2):331–345

    PubMed Central  PubMed  Google Scholar 

  • Molholm S, Martinez A, Ritter W, Javitt D, Foxe J (2005) The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb Cortex 15(5):545

    PubMed  Google Scholar 

  • Moon C, Cooper R, Fifer W (1993) Two-day-olds prefer their native language. Infant Behav Dev 16(4):495–500

    Google Scholar 

  • Moore B (2008) An introduction to the psychology of hearing, 5th edn. Emerald, Bingley

    Google Scholar 

  • Musacchia G, Sams M, Skoe E, Kraus N (2007) Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci 104(40):15894

    PubMed Central  PubMed  CAS  Google Scholar 

  • Näätänen R, Tervaniemi M, Sussman E, Paavilainen P, Winkler I (2001) ‘Primitive intelligence’ in the auditory cortex. TRENDS Neurosci 24(5):283–288

    PubMed  Google Scholar 

  • Nan Y, Knösche T, Friederici A (2006) The perception of musical phrase structure: a cross-cultural ERP study. Brain Res 1094(1):179–191

    PubMed  CAS  Google Scholar 

  • Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Curr Opin Neurobiol 14(4):474–480

    PubMed  CAS  Google Scholar 

  • Neuhaus C, Knösche T, Friederici A (2006) Effects of musical expertise and boundary markers on phrase perception in music. J Cogn Neurosci 18(3):472–493

    PubMed  Google Scholar 

  • Obleser J, Meyer L, Friederici A (2011) Dynamic assignment of neural resources in auditory comprehension of complex sentences. Neuroimage 56(4):2310–2320

    PubMed  Google Scholar 

  • Öngür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10(3):206

    PubMed  Google Scholar 

  • Opitz B, Kotz SA (2012) Ventral premotor cortex lesions disrupt learning of sequential grammatical structures. Cortex 48(6):664–673

    PubMed  Google Scholar 

  • Opitz B, Rinne T, Mecklinger A, Cramon D, Schröger E (2002) Differential contribution of frontal and temporal cortices to auditory change detection: fMRI and ERP results. Neuroimage 15:167–174

    PubMed  Google Scholar 

  • Orini M, Bailón R, Enk R, Koelsch S, Mainardi L, Laguna P (2010) A method for continuously assessing the autonomic response to music-induced emotions through HRV analysis. Med Biol Eng Comput 48(5):423–433

    PubMed  Google Scholar 

  • Overy K, Molnar-Szakacs I (2009) Being together in time: musical experience and the mirror neuron system. Music Percept 26(5):489–504

    Google Scholar 

  • Paller KA, McCarthy G, Wood CC (1992) Event-related potentials elicited by deviant endings to melodies. Psychophysiology 29(2):202–206

    PubMed  CAS  Google Scholar 

  • Panksepp J, Bernatzky G (2002) Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behav Processes 60(2):133–155

    PubMed  Google Scholar 

  • Pantev C, Roberts LE, Schulz M, Engelien A, Ross B (2001) Timbre-specific enhancement of auditory cortical representation in musicians. NeuroReport 12(1):169–174

    PubMed  CAS  Google Scholar 

  • Parsons L (2001) Exploring the functional neuroanatomy of music performance, perception, and comprehension. Ann N Y Acad Sci 930:211–231

    PubMed  CAS  Google Scholar 

  • Patel A (2003) Language, music, syntax and the brain. Nat Neurosci 6(7):674–681

    PubMed  CAS  Google Scholar 

  • Patel A (2008) Music, language, and the brain. Oxford University Press, Oxford/New York

    Google Scholar 

  • Patel A, Balaban E (2001) Human pitch perception is reflected in the timing of stimulus-related cortical activity. Nat Neurosci 4(8):839–844

    PubMed  CAS  Google Scholar 

  • Patel A, Gibson E, Ratner J, Besson M, Holcomb P (1998) Processing syntactic relations in language and music: an event-related potential study. J Cogn Neurosci 10(6):717–733

    PubMed  CAS  Google Scholar 

  • Patel A, Iversen J, Wassenaar M, Hagoort P (2008) Musical syntactic processing in agrammatic Broca’s aphasia. Aphasiology 22(7):776–789

    Google Scholar 

  • Patel A, Iversen J, Bregman M, Schulz I (2009) Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biol 19(10):827–830

    CAS  Google Scholar 

  • Patterson R, Uppenkamp S, Johnsrude I, Griffiths T (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36(4):767–776

    PubMed  CAS  Google Scholar 

  • Perani D, Saccuman M, Scifo P, Spada D, Andreolli G, Rovelli R (2010) Functional specializations for music processing in the human newborn brain. Proc Natl Acad Sci 107(10):4758

    PubMed Central  PubMed  CAS  Google Scholar 

  • Peretz I, Coltheart M (2003) Modularity of music processing. Nat Neurosci 6(7):688–691

    PubMed  CAS  Google Scholar 

  • Peretz I, Zatorre R (2005) Brain organization for music processing. Annu Rev Psychol 56:89–114

    PubMed  Google Scholar 

  • Peretz I, Brattico E, Järvenpää M, Tervaniemi M (2009) The amusic brain: in tune, out of key, and unaware. Brain 132(5):1277

    PubMed  Google Scholar 

  • Petkov C, Kayser C, Augath M, Logothetis N (2006) Functional imaging reveals numerous fields in the monkey auditory cortex. PLoS Biol 4(7):e215

    PubMed Central  PubMed  Google Scholar 

  • Pickles J (2008) An introduction to the physiology of hearing, 3rd edn. Emerald, Bingley

    Google Scholar 

  • Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148

    PubMed Central  PubMed  Google Scholar 

  • Poulin-Charronnat B, Bigand E, Koelsch S (2006) Processing of musical syntax tonic versus subdominant: an event-related potential study. J Cogn Neurosci 18(9):1545–1554

    PubMed  Google Scholar 

  • Quiroga Murcia C, Bongard S, Kreutz G (2009) Emotional and neurohumoral responses to dancing tango argentino. Music Med 1(1):14

    Google Scholar 

  • Rammsayer T, Altenmüller E (2006) Temporal information processing in musicians and nonmusicians. Music Percept 24(1):37–48

    Google Scholar 

  • Riemann H (1877/1971) Musikalische syntaxis: Grundriss einer harmonischen satzbildungslehre. Sändig, Niederwalluf

    Google Scholar 

  • Rilling J, Gutman D, Zeh T, Pagnoni G, Berns G, Kilts C (2002) A neural basis for social cooperation. Neuron 35(2):395–405

    PubMed  CAS  Google Scholar 

  • Rinne T, Degerman A, Alho K (2005) Superior temporal and inferior frontal cortices are activated by infrequent sound duration decrements: an fMRI study. Neuroimage 26(1):66–72

    PubMed  Google Scholar 

  • Rizzolatti G, Craighero L (2004) The mirror-neuron system. Annu Rev Neurosci 27:169–192

    PubMed  CAS  Google Scholar 

  • Rohrmeier M (2007) A generative grammar approach to diatonic harmonic structure. In: Proceedings of the 4th sound and music computing conference, pp 97–100

    Google Scholar 

  • Rohrmeier M (2011) A generative grammar approach to tonal harmony. J Math Music 5(1):35–53

    Google Scholar 

  • Rohrmeier M, Rebuschat P (2012) Implicit learning and acquisition of music. Top Cogn Sci 4:525–553

    PubMed  Google Scholar 

  • Rüsseler J, Altenmüller E, Nager W, Kohlmetz C, Münte T (2001) Event-related brain potentials to sound omissions differ in musicians and non-musicians. Neurosci Lett 308(1):33–36

    PubMed  Google Scholar 

  • Scherer K (2005) What are emotions? And how can they be measured? Soc Sci Inform 44(4):695

    Google Scholar 

  • Schmidt-Kassow M, Kotz S (2009) Event-related brain potentials suggest a late interaction of meter and syntax in the P600. J Cogn Neurosci 21(9):1693–1708

    PubMed  Google Scholar 

  • Schonwiesner M, Novitski N, Pakarinen S, Carlson S, Tervaniemi M, Näätänen R (2007) Heschl’s gyrus, posterior superior temporal gyrus, and mid-ventrolateral prefrontal cortex have different roles in the detection of acoustic changes. J Neurophysiol 97(3):2075

    PubMed  Google Scholar 

  • Schulze K, Mueller K, Koelsch S (2011a) Neural correlates of strategy use during auditory working memory in musicians and non-musicians. Eur J Neurosci 33(1):189–196

    PubMed  CAS  Google Scholar 

  • Schulze K, Zysset S, Mueller K, Friederici A, Koelsch S (2011b) Neuroarchitecture of verbal and tonal working memory in nonmusicians and musicians. Hum Brain Mapp 32(5):771–783

    PubMed  Google Scholar 

  • Scott S (2005) Auditory processing – speech, space and auditory objects. Curr Opin Neurobiol 15(2):197–201

    PubMed  CAS  Google Scholar 

  • Shinn-Cunningham B (2008) Object-based auditory and visual attention. Trends Cogn Sci 12(5):182–186

    PubMed Central  PubMed  Google Scholar 

  • Sinex D, Guzik H, Li H, Henderson Sabes J (2003) Responses of auditory nerve fibers to harmonic and mistuned complex tones. Hear Res 182(1–2):130–139

    PubMed  Google Scholar 

  • Slevc L, Rosenberg J, Patel A (2009) Making psycholinguistics musical: self-paced reading time evidence for shared processing of linguistic and musical syntax. Psychon Bull Rev 16(2):374

    PubMed  Google Scholar 

  • Sloboda JA (1991) Music structure and emotional response: some empirical findings. Psychol Music 19:110–120

    Google Scholar 

  • Song J, Skoe E, Wong P, Kraus N (2008) Plasticity in the adult human auditory brainstem following short-term linguistic training. J Cogn Neurosci 20(10):1892–1902

    PubMed Central  PubMed  Google Scholar 

  • Steinbeis N, Koelsch S (2008a) Comparing the processing of music and language meaning using EEG and FMRI provides evidence for similar and distinct neural representations. PLoS One 3(5):e2226

    PubMed Central  PubMed  Google Scholar 

  • Steinbeis N, Koelsch S (2008b) Shared neural resources between music and language indicate semantic processing of musical tension-resolution patterns. Cereb Cortex 18(5):1169

    PubMed  Google Scholar 

  • Steinbeis N, Koelsch S (2008c) Understanding the intentions behind man-made products elicits neural activity in areas dedicated to mental state attribution. Cereb Cortex 19(3):619–623

    PubMed  Google Scholar 

  • Steinbeis N, Koelsch S (2011) Affective priming effects of musical sounds on the processing of word meaning. J Cogn Neurosci 23:604–621

    PubMed  Google Scholar 

  • Steinhauer K, Alter K, Friederici AD (1999) Brain potentials indicate immediate use of prosodic cues in natural speech processing. Nat Neurosci 2(2):191–196

    PubMed  CAS  Google Scholar 

  • Strait D, Kraus N, Skoe E, Ashley R (2009) Musical experience and neural efficiency – effects of training on subcortical processing of vocal expressions of emotion. Eur J Neurosci 29(3):661–668

    PubMed  Google Scholar 

  • Sussman E (2007) A new view on the MMN and attention debate: the role of context in processing auditory events. J Psychophysiol 21(3):164–175

    Google Scholar 

  • Tervaniemi M (2009) Musicians – same or different? Ann N Y Acad Sci 1169(The Neurosciences and Music III Disorders and Plasticity):151–156

    PubMed  Google Scholar 

  • Tervaniemi M, Huotilainen M (2003) The promises of change-related brain potentials in cognitive neuroscience of music. Ann N Y Acad Sci 999(THE NEUROSCIENCES AND MUSIC):29–39

    PubMed  Google Scholar 

  • Tervaniemi M, Ilvonen T, Karma K, Alho K, Näätänen R (1997) The musical brain: brain waves reveal the neurophysiological basis of musicality in human subjects. Neurosci Lett 226(1):1–4

    PubMed  CAS  Google Scholar 

  • Tervaniemi M, Kujala A, Alho K, Virtanen J, Ilmoniemi R, Näätänen R (1999) Functional specialization of the human auditory cortex in processing phonetic and musical sounds: a magnetoencephalographic (MEG) study. Neuroimage 9(3):330–336

    PubMed  CAS  Google Scholar 

  • Tervaniemi M, Medvedev S, Alho K, Pakhomov S, Roudas M, Zuijen T (2000) Lateralized automatic auditory processing of phonetic versus musical information: a PET study. Hum Brain Mapp 10(2):74–79

    PubMed  CAS  Google Scholar 

  • Tervaniemi M, Rytkönen M, Schröger E, Ilmoniemi R, Näätänen R (2001) Superior formation of cortical memory traces for melodic patterns in musicians. Learn Mem 8(5):295

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tervaniemi M, Just V, Koelsch S, Widmann A, Schröger E (2005) Pitch discrimination accuracy in musicians vs nonmusicians: an event-related potential and behavioral study. Exp Brain Res 161(1):1–10

    PubMed  Google Scholar 

  • Tervaniemi M, Castaneda A, Knoll M, Uther M (2006a) Sound processing in amateur musicians and nonmusicians: event-related potential and behavioral indices. Neuroreport 17(11):1225

    PubMed  Google Scholar 

  • Tervaniemi M, Szameitat A, Kruck S, Schroger E, Alter K, De Baene W (2006b) From air oscillations to music and speech: functional magnetic resonance imaging evidence for fine-tuned neural networks in audition. J Neurosci 26(34):8647

    PubMed  CAS  Google Scholar 

  • Tervaniemi M, Kruck S, De Baene W, Schröger E, Alter K, Friederici A (2009) Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus. Eur J Neurosci 30(8):1636–1642

    PubMed  CAS  Google Scholar 

  • Tillmann B, Bharucha J, Bigand E (2000) Implicit learning of tonality: a self-organized approach. Psychol Rev 107(4):885–913

    PubMed  CAS  Google Scholar 

  • Tillmann B, Janata P, Bharucha J (2003) Activation of the inferior frontal cortex in musical priming. Cogn Brain Res 16(2):145–161

    Google Scholar 

  • Todd NPM, Paillard AC, Kluk K, Whittle E, Colebatch JG (2014) Vestibular receptors contribute to cortical auditory evoked potentials. Hear Res 309:63–74

    PubMed  PubMed Central  Google Scholar 

  • Tramo M, Shah G, Braida L (2002) Functional role of auditory cortex in frequency processing and pitch perception. J Neurophysiol 87(1):122

    PubMed  Google Scholar 

  • Trehub S (2003) The developmental origins of musicality. Nat Neurosci 6(7):669–673

    PubMed  CAS  Google Scholar 

  • Van Petten C, Kutas M (1990) Interactions between sentence context and word frequency in event-related brain potentials. Mem Cognit 18(4):380–393

    PubMed  Google Scholar 

  • Verleger R (1990) P3-evoking wrong notes: unexpected, awaited, or arousing? Int J Neurosci 55(2–4):171–179

    PubMed  CAS  Google Scholar 

  • Võ M, Conrad M, Kuchinke L, Urton K, Hofmann M, Jacobs A (2009) The Berlin Affective Word List Reloaded (BAWL-R). Behav Res Method 41(2):534–538

    Google Scholar 

  • Wallin NL, Merker B, Brown S (eds) (2000) The origins of music. MIT Press, Cambridge, MA

    Google Scholar 

  • Warren JD, Uppenkamp S, Patterson RD, Griffiths TD (2003) Separating pitch chroma and pitch height in the human brain. Proc Natl Acad Sci U S A 100(17):10038–10042

    PubMed Central  PubMed  CAS  Google Scholar 

  • Watanabe T, Yagishita S, Kikyo H (2008) Memory of music: roles of right hippocampus and left inferior frontal gyrus. Neuroimage 39(1):483–491

    PubMed  Google Scholar 

  • Whitfield I (1980) Auditory cortex and the pitch of complex tones. J Acoust Soc Am 67:644

    PubMed  CAS  Google Scholar 

  • Winkler I (2007) Interpreting the mismatch negativity. J Psychophysiol 21(3–4):147–163

    Google Scholar 

  • Winkler I, Denham S, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13(12):532–540

    PubMed  Google Scholar 

  • Wittfoth M, Schröder C, Schardt D, Dengler R, Heinze H, Kotz S (2010) On emotional conflict: interference resolution of happy and angry prosody reveals valence-specific effects. Cereb Cortex 20(2):383

    PubMed  Google Scholar 

  • Wong P, Skoe E, Russo N, Dees T, Kraus N (2007) Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci 10(4):420–422

    PubMed  CAS  Google Scholar 

  • Zatorre R (1988) Pitch perception of complex tones and human temporal-lobe function. J Acoust Soc Am 84:566–572

    PubMed  CAS  Google Scholar 

  • Zatorre R (2001) Neural specializations for tonal processing. Ann N Y Acad Sci 930(The biological foundations of music):193–210

    PubMed  CAS  Google Scholar 

  • Zatorre R, Evans A, Meyer E (1994) Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci 14(4):1908

    PubMed  CAS  Google Scholar 

  • Zatorre R, Belin P, Penhune V (2002) Structure and function of auditory cortex: music and speech. Trends Cogn Sci 6(1):37–46

    PubMed  Google Scholar 

  • Zuijen T, Sussman E, Winkler I, Näätänen R, Tervaniemi M (2004) Grouping of sequential sounds-an event-related potential study comparing musicians and nonmusicians. J Cogn Neurosci 16(2):331–338

    PubMed  Google Scholar 

  • Zuijen T, Sussman E, Winkler I, Näätänen R, Tervaniemi M (2005) Auditory organization of sound sequences by a temporal or numerical regularity – a mismatch negativity study comparing musicians and non-musicians. Cogn Brain Res 23(2–3):270–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Kölsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 © 2011 Koelsch. Originally published in: Koelsch S (2011) Toward a neural basis of music perception - a review and updated model. Front. Psychology 2:110. doi: 10.3389/fpsyg.2011.00110.

About this entry

Cite this entry

Kölsch, S. (2014). Music Processing in the Brain. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_104-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_104-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics