Definition
Neuromorphic olfaction is an emergent field of research which aims at unraveling computational principles of biological olfactory systems and translating them into algorithms and devices. The resulting technology has high potential for a wide range of practical applications (detection of chemical species, diagnosis, crime prevention and security, etc.) as well as a tool for basic research to verify hypotheses about the sense of smell in biological systems. Neuromorphic olfactory systems are composed of a sensing part which provides selective responses to particular chemical as input to a biologically inspired computational stage.
Detailed Description
Most animals rely on smell as sensory modality for survival and reproduction: it allows them to detect predator, food, and mates. The biological olfactory system is an ideal model for the study of information processing in biological neural networks. Furthermore, knowledge about animal olfaction could be used to improve...
References
Arshak K, Moore E, Lyons G, Harris J, Clifford S (2004) A review of gas sensors employed in electronic nose applications. Sens Rev 24(2):181–198
Beyeler M, Stefanini F, Proske H, Galizia G, Chicca E (2010) Exploring olfactory sensory networks: simulations and hardware emulation. In: Biomedical Circuits and Systems Conference BIOCAS 2010, IEEE, pp 270–273. doi:10.1109/BIOCAS.2010.5709623. http://ncs.ethz.ch/pubs/pdf/Beyeler_etal10.pdf
Du L, Wu C, Liu Q, Huang L, Wang P (2012) Recent advances in olfactory receptor-based biosensors. Biosens Bioelectron 42C:570–580
Hamana H, Shou-xin L, Breuils L, Hirono J, Sato T (2010) Heterologous functional expression system for odorant receptors. J Neurosci Methods 185(2):213–220. doi:10.1016/j.jneumeth.2009.09.024. http://www.ncbi.nlm.nih.gov/pubmed/19799933
Hou Y, Helali S, Zhang A, Jaffrezic-Renault N, Martelet C, Minic J, Gorojankina T, Persuy MA, Pajot-Augy E, Salesse R et al (2006) Immobilization of rhodopsin on a self-assembled multilayer and its specific detection by electrochemical impedance spectroscopy. Biosens Bioelectron 21(7):1393–1402. doi:10.1016/j.bios.2005.06.002. http://www.ncbi.nlm.nih.gov/pubmed/16043336
Hsieh HY, Tang KT (2012) Vlsi implementation of a bio-inspired olfactory spiking neural network. Neural Netw Learn Syst IEEE Trans 23(7):1065–1073
Imam N, Cleland TA, Manohar R, Merolla PA, Arthur JV, Akopyan F, Modha DS (2012) Implementation of olfactory bulb glomerular-layer computations in a digital neurosynaptic core. Front Neurosci 6:83
Kaiser L, Graveland-Bikker J, Steuerwald D, Vanberghem M, Herlihy K, Zhang S (2008) Efficient cell-free production of olfactory receptors: detergent optimization, structure, and ligand binding analyses. Proc Natl Acad Sci U S A 105(41):15,726–15,731. doi:10.1073/pnas.0804766105. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2572932&tool=pmcentrez&rendertype=abstract
Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23(3):150–156. doi:10.1016/j.tibtech.2005.01.003. http://www.ncbi.nlm.nih.gov/pubmed/15734558
Koickal TJ, Hamilton A, Tan SL, Covington JA, Gardner JW, Pearce TC (2007) Analog VLSI circuit implementation of an adaptive neuromorphic olfaction chip. IEEE Trans Circuits Syst I 54(1):60–73. doi:10.1109/TCSI.2006.888677
Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215
Ng KT, Boussaid F, Bermak A (2011) A cmos single-chip gas recognition circuit for metal oxide gas sensor arrays. Circuits Syst I Regul Pap IEEE Trans 58(7):1569–1580
Pearce TC, Karout S, Capurro A (2013) Rapid processing of chemosensor transients in a neuromorphic implementation of the insect macroglomerular complex. Front Neurosci 7:119
Persaud KC (2013) Biomimetic olfactory sensors. IEEE Sensors J 12(11):3108–3112
Pfeil T, Grbl A, Jeltsch S, Mller E, Mller P, Petrovici MA, Schmuker M, Brderle D, Schemmel J, Meier K (2013) Six networks on a universal neuromorphic computing substrate. Front Neurosci 7(11). doi:10.3389/fnins.2013.00011. http://www.frontiersin.org/neuromorphic_engineering/10.3389/fnins.2013.00011/abstract
Sankaran S, Panigrahi S, Mallik S (2011a) Odorant binding protein based biomimetic sensors for detection of alcohols associated with salmonella contamination in packaged beef. Biosens Bioelectron 26(7):3103–3109. doi:10.1016/j.bios.2010.07.122. http://www.ncbi.nlm.nih.gov/pubmed/21227678
Sankaran S, Panigrahi S, Mallik S (2011b) Olfactory receptor based piezoelectric biosensors for detection of alcohols related to food safety applications. Sensors Actuators B Chem 155(1):818. doi:10.1016/j.snb.2010.08.003. http://linkinghub.elsevier.com/retrieve/pii/S0925400510006647
Schmuker M, Schneider G (2007) Processing and classification of chemical data inspired by insect olfaction. Proc Natl Acad Sci 104(51):20,285–20,289. doi:10.1073/pnas.0705683104. http://www.pnas.org/content/104/51/20285.long
Schmuker M, Pfeil T, Nawrot MP (2014) A neuromorphic network for generic multivariate data classification. Proc Natl Acad Sci 111(6):2081–2086
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
Chicca, E., Schmuker, M., Nawrot, M. (2014). Neuromorphic Sensors, Olfaction. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_119-2
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7320-6_119-2
Received:
Accepted:
Published:
Publisher Name: Springer, New York, NY
Online ISBN: 978-1-4614-7320-6
eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences