Skip to main content

Computational Model-Based Development of Novel Stimulation Algorithms

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

In the context of this entry, the model-based development of stimulation algorithms designates a process of creation and computational testing of new techniques for control and modulation of undesirable (pathological) neuronal dynamics. Abnormal brain activity has been observed in several neurological disorders including Parkinson’s disease, essential tremor, epilepsy, tinnitus, and others. Brain stimulation is used for the therapy of patients suffering, for example, from Parkinson’s disease, epilepsy, or mental disorders. Brain stimulation is called deep brain stimulation (DBS) if structures deeply inside the brain are targeted, cortical stimulation (intracortical or epicortical) if the electrical contacts of the stimulator are positioned within the cortex or on its surface, or noninvasive transcranial stimulation if the neurons are stimulated by electrical currents induced across scalp by either external magnetic field (transcranial magnetic stimulation, TMS) or electrical...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

Coordinated reset stimulation:

Coordinated reset (CR) stimulation is an effectively desynchronizing control technique, where a population of synchronized oscillators is stimulated via several stimulation sites in such a way that spatially and timely coordinated phase reset is achieved in subpopulations assigned to each of the stimulation sites. This method is suggested for counteraction of abnormal neuronal synchronization characteristic for several neurological diseases and amelioration of their symptoms. It has successively been verified in a number of experimental and clinical studies.

Deep brain stimulation:

Electrical deep brain stimulation (DBS) is the standard therapy for medically refractory movement disorders, e.g., Parkinson’s disease and essential tremor. It requires a surgical treatment, where depth electrodes are chronically implanted in target areas like the thalamic ventralis intermedius nucleus or the subthalamic nucleus. For standard DBS, electrical high-frequency (>100 Hz) stimulation is permanently delivered via depth electrodes. More sophisticated deep brain stimulation techniques are in the process of being established for clinical use.

Delayed feedback:

Delayed feedback is a method for the creation of a closed-loop forcing, where a portion of the measured output signal of a system is time delayed, linearly or nonlinearly processed, and fed back into the system. This approach is often used to control the dynamic behavior of complex systems. In this entry, delayed feedback is used to control synchronization in ensembles of coupled oscillators, e.g., neurons.

Order parameter:

The order parameter is a quantity characterizing a phase transition or phase change in the transformation of a complex system from one phase (state) to another. The order parameter is convenient for characterizing the onset and extent of synchronization in larger ensembles: Perfect phase synchronization corresponds to a large value of the order parameter, whereas an incoherent (desynchronized) state is associated with a small value of the order parameter. In synergetics it has been shown that the dynamics of complex systems may be governed by only a few order parameters.

Synchronization:

Synchronization (from Greek syn = the same, common and chronos = time) means the adjustment of rhythms of self-sustained oscillators due to their weak interaction. The interacting oscillators can be regular (periodic) or chaotic. There are several different forms of synchronization including phase, complete, generalized, and lag synchronization, etc. In this entry, we focus on phase synchronization. In the simplest form, the oscillators, rotating with the same frequency, become phase synchronized (phase locked) to each other, if the difference of their phases remains bounded, e.g., constant. In the presence of noise, phase synchronization is characterized by the presence of one or more prominent peaks of the distribution of the phase difference. Put otherwise, the oscillators adjust their rhythms, while their amplitude dynamics need not be correlated.

References

  • Abbott L, Nelson S (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183

    PubMed  CAS  Google Scholar 

  • Adamchic I, Toth T, Hauptmann C, Tass PA (2013) Reversing pathologically increased EEG power by acoustic coordinated reset neuromodulation. Hum Brain Mapp. doi:10.1002/hbm.22314

    PubMed  Google Scholar 

  • Alberts WW, Wright EJ, Feinstein B (1969) Cortical potentials and parkinsonian tremor. Nature 221:670–672

    PubMed  CAS  Google Scholar 

  • Anderson ME, Postupna N, Ruffo M (2003) Effects of high-frequency stimulation in the internal globus pallidus on the activity of thalamic neurons in the awake monkey. J Neurophysiol 89(2):1150–1160

    PubMed  Google Scholar 

  • Andres F, Gerloff C (1999) Coherence of sequential movements and motor learning. J Clin Neurophysiol 16:520–527

    PubMed  CAS  Google Scholar 

  • Bearden CE, Hoffman KM, Cannon TD (2001) The neuropsychology and neuroanatomy of bipolar affective disorder: a critical review. Bipolar Disord 3(3):106–150

    PubMed  CAS  Google Scholar 

  • Benabid AL, Pollak P, Gervason C, Hoffmann D, Gao DM, Hommel M, Perret JE, de Rougemount J (1991) Long-term suppression of tremor by chronic stimulation of ventral intermediate thalamic nucleus. Lancet 337:403–406

    PubMed  CAS  Google Scholar 

  • Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17:S73–S74

    PubMed  Google Scholar 

  • Benabid AL, Wallace B, Mitrofanis J, Xia R, Piallat B, Chabardes S, Berger F (2005) A putative generalized model of the effects and mechanism of action of high frequency electrical stimulation of the central nervous system. Acta Neurol Belg 105(3):149–157

    PubMed  Google Scholar 

  • Bergman H, Wichmann T, Delong MR (1990) Reversal of experimental Parkinsonism by lesions of the subthalamic nucleus. Science 249(4975):1436–1438

    PubMed  CAS  Google Scholar 

  • Beurrier C, Bioulac B, Audin J, Hammond C (2001) High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356

    PubMed  CAS  Google Scholar 

  • Beurrier C, Garcia L, Bioulac B, Hammond C (2002) Subthalamic nucleus: a clock inside basal ganglia? Thal Relat Syst 2:1–8

    Google Scholar 

  • Bi G-Q (2002) Spatiotemporal specificity of synaptic plasticity: cellular rules and mechanisms. Biol Cybern 87:319–332

    PubMed  Google Scholar 

  • Bi G-Q, Poo M-M (1998) Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. J Neurosci 18:10464–10472

    PubMed  CAS  Google Scholar 

  • Blond S, Caparros-Lefebvre D, Parker F, Assaker R, Petit H, Guieu J-D, Christiaens J-L (1992) Control of tremor and involuntary movement disorders by chronic stereotactic stimulation of the ventral intermediate thalamic nucleus. J Neurosurg 77:62–68

    PubMed  CAS  Google Scholar 

  • Candy JM, Perry RH, Perry EK, Irving D, Blessed G, Fairbairn AF, Tomlinson BE (1983) Pathological-changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59(2):277–289

    PubMed  CAS  Google Scholar 

  • Caporale N, Dan Y (2008) Spike timing dependent plasticity: a Hebbian learning rule. Annu Rev Neurosci 31:25–46

    PubMed  CAS  Google Scholar 

  • Daido H (1992) Order function and macroscopic mutual entrainment in uniformly coupled limit-cycle oscillators. Prog Theor Phys 88:1213–1218

    Google Scholar 

  • Danzl P, Hespanha J, Moehlis J (2009) Event-based minimum-time control of oscillatory neuron models. Biol Cybern 101(5–6):387–399

    PubMed  Google Scholar 

  • Debanne D, Gahweiler B, Thompson S (1998) Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampus slice cultures. J Physiol 507:237–247

    PubMed  CAS  PubMed Central  Google Scholar 

  • Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, Daniels C, Deutschländer A, Dillmann U, Eisner W, Gruber D, Hamel W, Herzog J, Hilker R, Klebe S, Kloß M, Koy J, Krause M, Kupsch A, Lorenz D, Lorenzl S, Mehdorn H, Moringlane J, Oertel W, Pinsker M, Reichmann H, Reuß A, Schneider GH, Schnitzler A, Steude U, Sturm V, Timmermann L, Tronnier V, Trottenberg T, Wojtecki L, Wolf E, Poewe W, Voges J (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908

    PubMed  CAS  Google Scholar 

  • Dovzhenok A, Park C, Worth RM, Rubchinsky LL (2013) Failure of delayed feedback deep brain stimulation for intermittent pathological synchronization in Parkinson’s disease. PLoS One 8(3):e58264

    PubMed  CAS  PubMed Central  Google Scholar 

  • Elble RJ, Koller WC (1990) Tremor. John Hopkins University Press, Baltimore

    Google Scholar 

  • Ermentrout B, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural assemblies. J Math Biol 29:195–217

    Google Scholar 

  • Feldman DE (2000) Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27(1):45–56

    PubMed  CAS  Google Scholar 

  • Feng X, Greenwald B, Rabitz H, Shea-Brown E, Kosut R (2007a) Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. J Neural Eng 4(2):L14–L21

    PubMed  Google Scholar 

  • Feng XJ, Shea-Brown E, Greenwald B, Kosut R, Rabitz H (2007b) Optimal deep brain stimulation of the subthalamic nucleus – a computational study. J Comput Neurosci 23(3):265–282

    PubMed  Google Scholar 

  • Filali M, Hutchison WD, Palter VN, Lozano AM, Dostrovsky JO (2004) Stimulation-induced inhibition of neuronal firing in human subthalamic nucleus. Exp Brain Res 156(3):274–281

    PubMed  Google Scholar 

  • Freund H-J (2005) Long-term effects of deep brain stimulation in Parkinson’s disease. Brain 128:2222–2223

    PubMed  Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–78

    PubMed  CAS  Google Scholar 

  • Goddar G (1967) Development of epileptic seizures through brain stimulation at low intensity. Nature 214:1020–1021

    Google Scholar 

  • Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K (2009) Optical deconstruction of Parkinsonian neural circuitry. Science 324(5925):354–359

    PubMed  CAS  Google Scholar 

  • Grannan ER, Kleinfeld D, Sompolinsky H (1993) Stimulus-dependent synchronization of neuronal assemblies. Neural Comput 5:550–569

    Google Scholar 

  • Grill WM, McIntyre CC (2001) Extracellular excitation of central neurons: implications for the mechanisms of deep brain stimulation. Thal Relat Syst 1:269–277

    Google Scholar 

  • Haken H (1983) Advanced synergetics. Springer, Berlin

    Google Scholar 

  • Hammond C, Ammari R, Bioulac B, Garcia L (2008) Latest view on the mechanism of action of deep brain stimulation. Mov Disord 23(15):2111–2121

    PubMed  Google Scholar 

  • Hansel D, Mato G, Meunier C (1993) Phase dynamics of weakly coupled Hodgkin-Huxley neurons. Europhys Lett 23:367–372

    CAS  Google Scholar 

  • Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL (2003) Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J Neurosci 23(5):1916–1923

    PubMed  CAS  Google Scholar 

  • Hauptmann C, Tass PA (2007) Therapeutic rewiring by means of desynchronizing brain stimulation. Biosystems 89:173–181

    PubMed  Google Scholar 

  • Hauptmann C, Tass PA (2009) Cumulative and after-effects of short and weak coordinated reset stimulation: a modeling study. J Neural Eng 6(1):016004

    PubMed  CAS  Google Scholar 

  • Hauptmann C, Tass PA (2010) Restoration of segregated, physiological neuronal connectivity by desynchronizing stimulation. J Neural Eng 7:056008

    PubMed  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005a) Delayed feedback control of synchronization in locally coupled neuronal networks. Neurocomputing 65–66:759–767

    Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005b) Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biol Cybern 93:463–470

    PubMed  CAS  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2005c) Multisite coordinated delayed feedback for an effective desynchronization of neuronal networks. Stoch Dyn 5(2):307–319

    Google Scholar 

  • Hauptmann C, Omelchenko O, Popovych OV, Maistrenko Y, Tass PA (2007a) Control of spatially patterned synchrony with multisite delayed feedback. Phys Rev E 76:066209

    CAS  Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2007b) Demand-controlled desynchronization of oscillatory networks by means of a multisite delayed feedback stimulation. Comput Visual Sci 10:71–78

    Google Scholar 

  • Hauptmann C, Popovych O, Tass PA (2007c) Desynchronizing the abnormally synchronized neural activity in the subthalamic nucleus: a modeling study. Expert Rev Med Devices 4(5):633–650

    PubMed  Google Scholar 

  • Hebb D (1949) The organization of behavior: a neuropsychological theory, Wiley book in clinical psychology. Wiley, New York

    Google Scholar 

  • Kilgard MP, Merzenich MM (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279(5357):1714–1718

    PubMed  CAS  Google Scholar 

  • Kishimoto H, Yamada K, Iseki E, Kosaka K, Okoshi T (1998) Brain imaging of affective disorders and schizophrenia. Psychiatry Clin Neurosci 52(Suppl):S212–S214

    PubMed  Google Scholar 

  • Kiss IZ, Rusin CG, Kori H, Hudson JL (2007) Engineering complex dynamical structures: sequential patterns and desynchronization. Science 316(5833):1886–1889

    PubMed  CAS  Google Scholar 

  • Kumar R, Lozano AM, Sime E, Lang AE (2003) Long-term follow-up of thalamic deep brain stimulation for essential and Parkinsonian tremor. Neurology 61(11):1601–1604

    PubMed  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer, Berlin

    Google Scholar 

  • Limousin P, Speelman JD, Gielen F, Janssens M (1999) Multicentre European study of thalamic stimulation in Parkinsonian and essential tremor. J Neurol Neurosurg Psychiatry 66:289–296

    PubMed  CAS  PubMed Central  Google Scholar 

  • Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, Foltynie T, Limousin P, Ashkan K, FitzGerald J, Green AL, Aziz TZ, Brown P (2013) Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74(3):449–457

    PubMed  PubMed Central  Google Scholar 

  • Llinas RR, Ribary U, Jeanmonod D, Kronberg E, Mitra PP (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci U S A 96(26):15222–15227

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lücken L, Yanchuk S, Popovych OV, Tass PA (2013) Desynchronization boost by non-uniform coordinated reset stimulation in ensembles of pulse-coupled neurons. Front Comput Neurosci 7(63):63

    PubMed  PubMed Central  Google Scholar 

  • Luo M, Wu YJ, Peng JH (2009) Washout filter aided mean field feedback desynchronization in an ensemble of globally coupled neural oscillators. Biol Cybern 101(3):241–246

    PubMed  Google Scholar 

  • Lysyansky B, Popovych OV, Tass PA (2011a) Desynchronizing anti-resonance effect of m:n on-off coordinated reset stimulation. J Neural Eng 8(3):036019

    PubMed  Google Scholar 

  • Lysyansky B, Popovych OV, Tass PA (2011b) Multi-frequency activation of neuronal networks by coordinated reset stimulation. Interface Focus 1(1):75–85

    PubMed  PubMed Central  Google Scholar 

  • Lysyansky B, Popovych OV, Tass PA (2013) Optimal number of stimulation contacts for coordinated reset neuromodulation. Front Neuroeng 6(5):5

    PubMed  PubMed Central  Google Scholar 

  • Maistrenko YL, Lysyansky B, Hauptmann C, Burylko O, Tass PA (2007) Multistability in the Kuramoto model with synaptic plasticity. Phys Rev E 75(6):066207

    Google Scholar 

  • Markram H, Lübke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275:213–215

    PubMed  CAS  Google Scholar 

  • McIntyre CC, Grill WM, Sherman DL, Thakor NV (2004a) Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. J Neurophysiol 91(4):1457–1469

    PubMed  Google Scholar 

  • McIntyre CC, Savasta M, Goff LK-L, Vitek JL (2004b) Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin Neurophysiol 115(6):1239–1248

    PubMed  Google Scholar 

  • Meissner W, Leblois A, Hansel D, Bioulac B, Gross CE, Benazzouz A, Boraud T (2005) Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain 128:2372–2382

    PubMed  Google Scholar 

  • Milton J, Jung P (eds) (2003) Epilepsy as a dynamic disease. Biological and medical physics, biomedical engineering. Springer, Berlin

    Google Scholar 

  • Miocinovic S, Parent M, Butson CR, Hahn PJ, Russo GS, Vitek JL, McIntyre CC (2006) Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. J Neurophysiol 96(3):1569–1580

    PubMed  Google Scholar 

  • Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73(1):1–60

    PubMed  CAS  Google Scholar 

  • Moro E, Esselink RJA, Xie J, Hommel M, Benabid AL, Pollak P (2002) The impact on Parkinson’s disease of electrical parameter settings in stn stimulation. Neurology 59(5):706–713

    PubMed  CAS  Google Scholar 

  • Nabi A, Moehlis J (2011) Single input optimal control for globally coupled neuron networks. J Neural Eng 8(6):065008

    PubMed  Google Scholar 

  • Neiman A, Russell D, Yakusheva T, DiLullo A, Tass PA (2007) Response clustering in transient stochastic synchronization and desynchronization of coupled neuronal bursters. Phys Rev E 76:021908

    Google Scholar 

  • Nini A, Feingold A, Slovin H, Bergmann H (1995) Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. J Neurophysiol 74:1800–1805

    PubMed  CAS  Google Scholar 

  • Nowotny T, Zhigulin VP, Selverston AI, Abarbanel HDI, Rabinovich MI (2003) Enhancement of synchronization in a hybrid neural circuit by spike-timing dependent plasticity. J Neurosci 23(30):9776–9785

    PubMed  CAS  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization, a universal concept in nonlinear sciences. Cambridge University Press, Cambridge

    Google Scholar 

  • Pliss V (1964) Principal reduction in the theory of stability of motion. Izv Akad Nauk SSSR Math Ser 28:1297–1324

    Google Scholar 

  • Popovych OV, Tass PA (2010) Synchronization control of interacting oscillatory ensembles by mixed nonlinear delayed feedback. Phys Rev E 82(2):026204

    Google Scholar 

  • Popovych OV, Tass PA (2012) Desynchronizing electrical and sensory coordinated reset neuromodulation. Front Hum Neurosci 6:58

    PubMed  PubMed Central  Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2005) Effective desynchronization by nonlinear delayed feedback. Phys Rev Lett 94:164102

    PubMed  Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2006a) Control of neuronal synchrony by nonlinear delayed feedback. Biol Cybern 95:69–85

    PubMed  Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2006b) Desynchronization and decoupling of interacting oscillators by nonlinear delayed feedback. Int J Bifurc Chaos 16(7):1977–1987

    Google Scholar 

  • Popovych OV, Hauptmann C, Tass PA (2008) Impact of nonlinear delayed feedback on synchronized oscillators. J Biol Phys 34:367–379

    PubMed Central  Google Scholar 

  • Pyragas K, Popovych OV, Tass PA (2007) Controlling synchrony in oscillatory networks with a separate stimulation-registration setup. Europhys Lett 80:40002

    Google Scholar 

  • Pyragas K, Novicenko V, Tass PA (2013) Mechanism of suppression of sustained neuronal spiking under high-frequency stimulation. Biol Cybern 107:669–684

    Google Scholar 

  • Rizzone M, Lanotte M, Bergamasco B, Tavella A, Torre E, Faccani G, Melcarne A, Lopiano L (2001) Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry 71(2):215–219

    PubMed  CAS  PubMed Central  Google Scholar 

  • Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA (2010) Ringing ears: the neuroscience of tinnitus. J Neurosci 30(45):14972–14979

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rodriguez-Oroz MC, Obeso JA, Lang AE, Houeto JL, Pollak P, Rehncrona S, Kulisevsky J, Albanese A, Volkmann J, Hariz MI, Quinn NP, Speelman JD, Guridi J, Zamarbide I, Gironell A, Molet J, Pascual-Sedano B, Pidoux B, Bonnet AM, Agid Y, Xie J, Benabid AL, Lozano AM, Saint-Cyr J, Romito L, Contarino MF, Scerrati M, Fraix V, Van Blercom N (2005) Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128:2240–2249

    PubMed  CAS  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2004a) Controlling synchronization in an ensemble of globally coupled oscillators. Phys Rev Lett 92:114102

    PubMed  Google Scholar 

  • Rosenblum MG, Pikovsky AS (2004b) Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys Rev E 70:041904

    Google Scholar 

  • Rosin B, Slovik M, Mitelman R, Rivlin-Etzion M, Haber SN, Israel Z, Vaadia E, Bergman H (2011) Closed-loop deep brain stimulation is superior in ameliorating Parkinsonism. Neuron 72(2):370–384

    PubMed  CAS  Google Scholar 

  • Rubin JE, Terman D (2004) High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. J Comput Neurosci 16(3):211–235

    PubMed  Google Scholar 

  • Salehi A, Lucassen PJ, Pool CW, Gonatas NK, Ravid R, Swaab DF (1994) Decreased neuronal-activity in the nucleus basalis of Meynert in Alzheimer’s-disease as suggested by the size of the Golgi-apparatus. Neuroscience 59(4):871–880

    PubMed  CAS  Google Scholar 

  • Schnitzler A, Timmermann L, Gross J (2006) Physiological and pathological oscillatory networks in the human motor system. J Physiol Paris 99:3–7

    PubMed  Google Scholar 

  • Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, van Someren EJ, de Bie RM, Merkus MP, Speelman JD (2000) A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N Engl J Med 342:461–468

    PubMed  CAS  Google Scholar 

  • Seliger P, Young SC, Tsimring LS (2002) Plasticity and learning in a network of coupled phase oscillators. Phys Rev E 65(4):041906

    Google Scholar 

  • Silchenko A, Tass P (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98:61–74

    PubMed  Google Scholar 

  • Silchenko AN, Adamchic I, Hauptmann C, Tass PA (2013) Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound. Neuroimage 77:133–147

    PubMed  Google Scholar 

  • Singer W (1989) Search for coherence: a basic principle of cortical self-organization. Concepts Neurosci 1:1–26

    Google Scholar 

  • Smirnov DA, Barnikol UB, Barnikol TT, Bezruchko BP, Hauptmann C, Buhrle C, Maarouf M, Sturm V, Freund H-J, Tass PA (2008) The generation of Parkinsonian tremor as revealed by directional coupling analysis. Europhys Lett 83(2):20003

    Google Scholar 

  • Song S, Miller K, Abbott L (2000) Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3:919–926

    PubMed  CAS  Google Scholar 

  • Speckmann E, Elger C (1991) The neurophysiological basis of epileptic activity: a condensed overview. Epilepsy Res Suppl 2:1–7

    PubMed  CAS  Google Scholar 

  • Tasker RR (1998) Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol 49:145–154

    PubMed  CAS  Google Scholar 

  • Tass PA (1999) Phase resetting in medicine and biology: stochastic modelling and data analysis. Springer, Berlin

    Google Scholar 

  • Tass PA (2001) Effective desynchronization with a resetting pulse train followed by a single pulse. Europhys Lett 55:171–177

    CAS  Google Scholar 

  • Tass PA (2002a) Desynchronization of brain rhythms with soft phase-resetting techniques. Biol Cybern 87:102–115

    PubMed  Google Scholar 

  • Tass PA (2002b) Effective desynchronization with bipolar double-pulse stimulation. Phys Rev E 66:036226

    Google Scholar 

  • Tass PA (2003a) Desynchronization by means of a coordinated reset of neural subpopulations – a novel technique for demand controlled deep brain stimulation. Prog Theory Phys Suppl 150:281–296

    Google Scholar 

  • Tass PA (2003b) A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biol Cybern 89:81–88

    PubMed  Google Scholar 

  • Tass P, Hauptmann C (2006) Long-term anti-kindling effects induced by short-term, weak desynchronizing stimulation. Nonlinear Phenom Complex Syst 9:298–312

    Google Scholar 

  • Tass PA, Hauptmann C (2007) Therapeutic modulation of synaptic connectivity with desynchronizing brain stimulation. Int J Psychophysiol 64(1):53–61

    PubMed  Google Scholar 

  • Tass PA, Hauptmann C (2009) Anti-kindling achieved by stimulation targeting slow synaptic dynamics. Restor Neurol Neurosci 27(6):591–611

    Google Scholar 

  • Tass PA, Majtanik M (2006) Long-term anti-kindling effects of desynchronizing brain stimulation: a theoretical study. Biol Cybern 94(1):58–66

    PubMed  Google Scholar 

  • Tass PA, Popovych OV (2012) Unlearning tinnitus-related cerebral synchrony with acoustic coordinated reset stimulation: theoretical concept and modelling. Biol Cybern 106:27–36

    PubMed  Google Scholar 

  • Tass PA, Hauptmann C, Popovych OV (2006) Development of therapeutic brain stimulation techniques with methods from nonlinear dynamics and statistical physics. Int J Bifurc Chaos 16(7):1889–1911

    Google Scholar 

  • Tass PA, Silchenko AN, Hauptmann C, Barnikol UB, Speckmann EJ (2009) Long-lasting desynchronization in rat hippocampal slice induced by coordinated reset stimulation. Phys Rev E 80(1):011902

    CAS  Google Scholar 

  • Tass P, Adamchic I, Freund H-J, von Stackelberg T, Hauptmann C (2012a) Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci 30:137–159

    PubMed  Google Scholar 

  • Tass PA, Qin L, Hauptmann C, Doveros S, Bezard E, Boraud T, Meissner WG (2012b) Coordinated reset has sustained aftereffects in Parkinsonian monkeys. Ann Neurol 72(5):816–820

    PubMed  Google Scholar 

  • Timmermann L, Florin E, Reck C (2007) Pathological cerebral oscillatory activity in Parkinson’s disease: a critical review on methods, data and hypotheses. Expert Rev Med Devices 4(5):651–661

    PubMed  Google Scholar 

  • Tukhlina N, Rosenblum M, Pikovsky A, Kurths J (2007) Feedback suppression of neural synchrony by vanishing stimulation. Phys Rev E 75:011918

    Google Scholar 

  • van Hemmen J (2001) Theory of synaptic plasticity. In: Moss F, Gielen S (eds) Handbook of biological physics, vol 4. Elsevier, Amsterdam, pp 771–823

    Google Scholar 

  • Volkmann J (2004) Deep brain stimulation for the treatment of Parkinson’s disease. J Clin Neurophysiol 21(1):6–17

    PubMed  Google Scholar 

  • Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2(6):e153

    PubMed  PubMed Central  Google Scholar 

  • Welter ML, Houeto JL, Bonnet AM, Bejjani PB, Mesnage V, Dormont D, Navarro S, Cornu P, Agid Y, Pidoux B (2004) Effects of high-frequency stimulation on subthalamic neuronal activity in Parkinsonian patients. Arch Neurol 61(1):89–96

    PubMed  Google Scholar 

  • Wittenberg GM, Wang SSH (2006) Malleability of spike-timing-dependent plasticity at the CA3-CA1 synapse. J Neurosci 26(24):6610–6617

    PubMed  CAS  Google Scholar 

  • Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J (1992) Negative symptoms and hypofrontality in chronic-schizophrenia. Arch Gen Psychiatry 49(12):959–965

    PubMed  CAS  Google Scholar 

  • Wunderlin A, Haken H (1975) Scaling theory for nonequilibrium systems. Z Phys B 21:393–401

    Google Scholar 

  • Zhai Y, Kiss IZ, Hudson JL (2008) Control of complex dynamics with time-delayed feedback in populations of chemical oscillators: desynchronization and clustering. Ind Eng Chem Res 47(10):3502–3514

    CAS  Google Scholar 

  • Zhou Q, Tao HW, Poo MM (2003) Reversal and stabilization of synaptic modifications in a developing visual system. Science 300(5627):1953–1957

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Popovych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Popovych, O.V., Tass, P.A. (2014). Computational Model-Based Development of Novel Stimulation Algorithms. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_124-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_124-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics