Skip to main content

FitzHugh–Nagumo Model

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

The FitzHugh–Nagumo (FHN) model is a mathematical model of neuronal excitability developed by Richard FitzHugh as a reduction of the Hodgkin and Huxley’s model of action potential generation in the squid giant axon (FitzHugh 1955). Nagumo et al. subsequently designed, implemented, and analyzed an equivalent electric circuit (Nagumo et al. 1962).

In its basic form, the model consists of two coupled, nonlinear ordinary differential equations, one of which describes the fast evolution of the neuronal membrane voltage, the other representing the slower “recovery” action of sodium channel deinactivation and potassium channel deactivation. Phase plane analysis of the FHN model provides qualitative explanations of several aspects of the excitability exhibited by the Hodgkin–Huxley (HH) model, including all-or-none spiking, excitation block, and the apparent absence of a firing threshold. A version of the FHN equations which adds a spatial diffusion term models the propagation of an...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Desroches M, Krupa M, Rodrigues S (2013) Inflection, canards and excitability threshold in neuronal models. J Math Biol 67(4):989–1017

    Article  PubMed  CAS  Google Scholar 

  • FitzHugh R (1955) Mathematical models of threshold phenomena in the nerve membrane. Bull Math Biophys 17(4):257–278

    Article  Google Scholar 

  • FitzHugh R (1961) Impulses and physiological states in theoretical models of nerve membrane. Biophys J 1:445–466

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • FitzHugh R (1968) Motion picture of nerve impulse propagation using computer animation. J Appl Physiol 25(5):628–630

    PubMed  CAS  Google Scholar 

  • Guckenheimer J, Oliva R (2002) Chaos in the Hodgkin–Huxley model. SIAM J Appl Dyn Syst 1(1):105–114

    Article  Google Scholar 

  • Izhikevich EM, FitzHugh R (2006) FitzHugh–Nagumo model. Scholarpedia 1(9):1349

    Article  Google Scholar 

  • Keener JP, Sneyd J (2009) Mathematical physiology: I: cellular physiology, vol 1. Springer, New York

    Google Scholar 

  • McKean HP (1970) Nagumo’s equation. Adv Math 4(3):209–223

    Article  Google Scholar 

  • Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35(1):193–213

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Nagumo J, Arimoto S, Yoshizawa S (1962) An active pulse transmission line simulating nerve axon. Proc IRE 50(10):2061–2070

    Article  Google Scholar 

  • Rowat PF, Selverston AI (1997) Oscillatory mechanisms in pairs of neurons connected with fast inhibitory synapses. J Comput Neurosci 4:103–127

    Article  PubMed  CAS  Google Scholar 

  • Scott AC (1975) The electrophysics of a nerve fiber. Rev Mod Phys 47(2):487–535

    Article  Google Scholar 

  • Tonnelier A (2003) The McKean’s caricature of the FitzHugh-Nagumo model I. The space-clamped system. SIAM J Appl Math 63(2):459–484

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Erik Sherwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Sherwood, W.E. (2014). FitzHugh–Nagumo Model. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_147-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_147-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics