Synonyms
Objective, distance, error, cost, or match functions in neuronal model optimization
Definition
A fitness function is a procedure, typically analytical, which quantifies the degree to which a data set or solution meets a given goal. In neuronal modeling, fitness functions typically compare the result of a computer simulation against biological activity for the purpose of guiding parameter optimization.
Detailed Description
Background
Computational models are widely used in neuroscience. These models vary greatly in the level of biological verisimilitude. At one extreme are detailed conductance-based compartment models that model neuron conductances with physiologically derived differential equations, appropriately distributed on accurately reproduced neuron anatomies (Skinner 2006). At the other extreme are highly abstract models with greatly simplified individual neurons and synapses, e.g., integrate and fire neurons with simple on/off synapses. All such models have free...
References
Achard P, De Schutter E (2006) Complex parameter landscape for a complex neuron model. PLoS Comput Biol 2:e94. doi: 06-PLCB-RA-0109R2 [pii]; 10.1371/journal.pcbi.0020094
Ambros-Ingerson J, Grover LM, Holmes WR (2008) A classification method to distinguish cell-specific responses elicited by current pulses in hippocampal CA1 pyramidal cells. Neural Comput 20:1512–1536. doi:10.1162/neco.2007.07-07-564
Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69:1948–1965
Deb K (2001) Multi-objective optimization using evolutionary algorithms. Wiley, Hoboken
Dorigo M, Di Caro G, Gambardella LM (1999) Ant algorithms for discrete optimization. Artif Life 5:137–172
Druckmann S, Banitt Y, Gideon A, Schurmann F, Markram H, Segev I (2007) A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Front Neurosci 1:7–18
Ellner SP, Guckenheimer JC (2006) Dynamic models in biology. Princeton University Press, Princeton
Gray RM (1990) Entropy and information theory. Springer, New York
Hanrahan G (2011) Swarm intelligence metaheuristics for enhanced data analysis and optimization. Analyst 136:3587–3594. doi:10.1039/c1an15369b
Houghton C, Victor JD (2012) Measuring representational distances – the spike-train metrics approach. In: Kriegeskorte N, Kreima G (eds) Visual population codes: towards a common multivariate framework for cell recording and functional imaging. MIT Press, Boston, pp 213–244
Keren N, Peled N, Korngreen A (2005) Constraining compartmental models using multiple voltage recordings and genetic algorithms. J Neurophysiol 94:3730–3742. doi:00408.2005 [pii]; 10.1152/jn.00408.2005
Koutsou A, Kanev J, Christodoulou C (2013) Measuring input synchrony in the Ornstein-Uhlenbeck neuronal model through input parameter estimation. Brain Res 1536:97–106
Kreuz T (2011) Measures of spike train synchrony. Scholarpedia 6:11934
Kreuz T (2013) Measures of neuronal signal synchrony. Scholarpedia 6:11922
Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A (2007) Measuring spike train synchrony. J Neurosci Methods 165:151–161. doi:S0165-0270(07)00267-1 [pii]; 10.1016/j.jneumeth.2007.05.031
LeMasson G, Maex R (2001) Introduction to equation solving and parameter fitting. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, London, pp 1–24
Moles CG, Mendes P, Banga JR (2003) Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res 13:2467–2474
Morris C, Lecar H (1981) Voltage oscillations in the barnacle giant muscle fiber. Biophys J 35:193–213. doi: S0006-3495(81)84782-0 [pii]; 10.1016/S0006-3495(81)84782-0
Nelder JA, Mead R (1965) A simplex method for function minimization. Comp J 7:308–313
Nowak L, Sanchez-Vives MV, McCorkick DA (1997) Influence of low and high frequency inputs on spike timing in visual cortical neurons. Cereb Cortex 7:487–501
Osman IH, Laporte G (1996) Metaheuristics: a bibliography. Ann Oper Res 63:513–623
Prinz AA (2007) Neuronal parameter optimization. Scholarpedia 2:1903
Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7:1345–1352. doi:nn1352 [pii]; 10.1038/nn1352
Saha SK, Ghoshal SP, Kar R, Mandal D (2013) Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans http://dx.doi.org/10.1016/j.isatra.2013.07.009i. doi:S0019-0578(13)00105-5 [pii]; 10.1016/j.isatra.2013.07.009
Schreiber S, Fellous JM, Whitmer D, Tiesinga P, Sejnowski TJ (2003) A new correlation-based measure of spike timing reliability. Neurocomputing 52–54:925–931. doi:10.1016/S0925-2312(02)00838-X
Schulz DJ, Goaillard JM, Marder E (2006) Variable channel expression in identified single and electrically coupled neurons in different animals. Nat Neurosci 9:356–362. doi:nn1639 [pii]; 10.1038/nn1639
Skinner FK (2006) Conductance-based models. Scholarpedia 1:1408
Tateno T, Pakdaman K (2004) Random dynamics of the Morris-Lecar neural model. Chaos 14:511–530
Tuckwell HC, Wan FY, Rospars JP (2002) A spatial stochastic neuron model with Ornstein-Uhlenbeck input current. Biol Cybern 86:137–145
Van Geit W, De Schutter E, Achard P (2008) Automated neuron model optimization techniques: a review. Biol Cybern 99:241–251. doi:10.1007/s00422-008-0257-6
van Rossum MC (2001) A novel spike distance. Neural Comput 13:751–763
Victor JD (2005) Spike train metrics. Curr Opin Neurobiol 15:585–592. doi:S0959-4388(05)00123-6 [pii]; 10.1016/j.conb.2005.08.002
Victor JD, Purpura KP (1996) Nature and precision of temporal coding in visual cortex: a metric-space analysis. J Neurophysiol 76:1310–1326
Victor JD, Purpura KP (2010) Spike metrics. In: Grun S, Rotter S (eds) Analysis of parallel spike trains. Springer, New York, pp 129–156
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this entry
Cite this entry
White, W., Hooper, S. (2014). Neuronal Model Output Fitness Function. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_160-1
Download citation
DOI: https://doi.org/10.1007/978-1-4614-7320-6_160-1
Received:
Accepted:
Published:
Publisher Name: Springer, New York, NY
Online ISBN: 978-1-4614-7320-6
eBook Packages: Living Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences