Skip to main content

Neuronal Model Databases

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Brute-force model databases; neuronal parameter-measure model databases; neuronal simulation databases

Definition

A neuronal model database, in contrast to neuronal databases that collect experimental data, holds instances of computational models of one type. This model can be of a single neuron or a neuronal network, which is replicated by varying its input model parameters to yield many instances that are inserted into a searchable database. Each entry in the database corresponds to one model instance, which contains: (1) values of the varied parameters (e.g., maximal conductance, reversal potential, synaptic weights) required to uniquely identify and sufficient to re-simulate the model; and (2) several key output characteristics from the model simulation (e.g., firing rate for a single neuron or a bursting period in a network). The resulting database is often used to study the relevant properties (response to stimulus or firing activity characteristics) of the model across...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ball JM, Franklin CC, Tobin AE, Schulz DJ, Nair SS (2010) Coregulation of ion channel conductances preserves output in a computational model of a crustacean cardiac motor neuron. J Neurosci 30(25):8637–8649. http://www.jneurosci.org/content/30/25/8637.short

  • Bhalla US, Bower JM (1993) Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol 69(6):1948–1965

    CAS  PubMed  Google Scholar 

  • Calin-Jageman RJ, Katz PS (2006) A distributed computing tool for generating neural simulation databases. Neural Comput 18(12):2923–2927. doi:10.1162/neco.2006.18.12.2923. http://dx.doi.org/10.1162/neco.2006.18.12.2923

  • Calin-Jageman RJ, Tunstall MJ, Mensh BD, Katz PS, Frost WN (2007) Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. J Neurophysiol 98(4):2382–2398. doi:10.1152/jn.00572.2007, ISSN 0022–3077

    Article  PubMed  Google Scholar 

  • DeSchutter E, Bower J (1994) An active membrane model of the cerebellar purkinje-cell. 1. Simulation of current clamps in slice. J Neurophysiol 71(1):375–400, ISSN 0022–3077

    CAS  Google Scholar 

  • Doloc-Mihu A, Calabrese RL (2011). A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity. J Biol Phys 37(3):263–283. doi:10.1007/s10867-011-9215-y. http://dx.doi.org/10.1007/s10867-011-9215-y

  • Foster W, Ungar L, Schwaber J (1993) Significance of conductances in Hodgkin-Huxley models. J Neurophysiol 70(6):2502–2518, ISSN 0022–3077

    CAS  PubMed  Google Scholar 

  • Goldman M, Golowasch J, Marder E, Abbott L (2001) Global structure, robustness, and modulation of neuronal networks. J Neurosci 21:5229–5238

    CAS  PubMed  Google Scholar 

  • Günay C, Prinz AA (2009) Finding sensors for homeostasis of biological neuronal networks using artificial neural networks. In: Kozma R, Venayagamoorthy GK (eds) Proceedings of the 2009 international joint conference on neural networks (IJCNN), IEEE Computer Society, Los Alamitos, pp 1025–1032. ISBN 978-1-4244-3548-7. doi:10.1109/IJCNN.2009.5178991

    Google Scholar 

  • Günay C, Prinz AA (2010) Model calcium sensors for network homeostasis: sensor and readout parameter analysis from a database of model neuronal networks. J Neurosci 30:1686–1698. doi:10.1523/jneurosci.3098-09.2010, NIHMS176368, PMC2851246

    Article  PubMed Central  PubMed  Google Scholar 

  • Günay C, Edgerton JR, Jaeger D (2008) Channel density distributions explain spiking variability in the globus pallidus: a combined physiology and computer simulation database approach. J Neurosci 28(30):7476–7491. doi:10.1523/jneurosci.4198-07.2008

    Article  PubMed  Google Scholar 

  • Günay C, Edgerton JR, Li S, Sangrey T, Prinz AA, Jaeger D (2009) Database analysis of simulated and recorded electrophysiological datasets with PANDORA’s toolbox. Neuroinformatics 7(2):93–111. doi:10.1007/s12021-009-9048-z

    Article  PubMed Central  PubMed  Google Scholar 

  • Hudson AE, Prinz AA (2010) Conductance ratios and cellular identity. PLoS Comput Biol 6(7):e1000838. doi:10.1371/journal.pcbi.1000838. http://dx.doi.org/10.1371/journal.pcbi.1000838

  • Marin B, Barnett WH, Doloc-Mihu A, Calabrese RL, Cymbalyuk GS (2013) High prevalence of multistability of rest states and bursting in a database of a model neuron. PLoS Comput Biol 9(3):e1002930. doi:10.1371/journal.pcbi.1002930. http://dx.doi.org/10.1371/journal.pcbi.1002930

  • Nowotny T, Szücs A, Levi R, Selverston AI (2007) Models wagging the dog: are circuits constructed with disparate parameters? Neural Comput 19(8): 1985–2003. doi:10.1162/neco.2007.19.8.1985. http://dx.doi.org/10.1162/neco.2007.19.8.1985

  • Opitz D, Maclin R (1997) An empirical evaluation of bagging and boosting for artificial neural networks. In: Neural networks, 1997, international conference on, vol 3, IEEE, pp 1401–1405. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=613999

  • Prinz AA (2010) Computational approaches to neuronal network analysis. Philos Trans R Soc Lond B Biol Sci 365(1551):2397–2405. doi:10.1098/rstb.2010.0029. http://dx.doi.org/10.1098/rstb.2010.0029

  • Prinz AA, Billimoria CP, Marder E (2003) Alternative to hand-tuning conductance-based models: construction and analysis of databases of model neurons. J Neurophysiol 90:3998–4015

    Article  PubMed  Google Scholar 

  • Prinz AA, Bucher D, Marder E (2004) Similar network activity from disparate circuit parameters. Nat Neurosci 7(12):1345–1352

    Article  CAS  PubMed  Google Scholar 

  • Soofi W, Archila S, Prinz AA (2012) Co-variation of ionic conductances supports phase maintenance in stomatogastric neurons. J Comput Neurosci 33(1):77–95. doi:10.1007/s10827-011-0375-3. http://dx.doi.org/10.1007/s10827-011-0375-3

  • Strogatz SH (2006) Nonlinear dynamics and chaos (with applications to physics, biology, chemistry, and Engineering). Perseus Publishing, New York

    Google Scholar 

  • Williams AH, Kwiatkowski MA, Mortimer AL, Marder E, Zeeman ML, Dickinson PS (2013) Animal-to-animal variability in the phasing of the crustacean cardiac motor pattern: an experimental and computational analysis. J Neurophysiol 109(10):2451–2465. doi:10.1152/jn.01010.2012. http://dx.doi.org/10.1152/jn.01010.2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cengiz Günay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Günay, C. (2014). Neuronal Model Databases. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_165-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_165-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics