Skip to main content

Calcium Release, Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 226 Accesses

Definition

Intracellular Ca2+ levels control nearly all cell functions. To adequately fulfill its physiological roles, cytosolic Ca2+ concentration is thus dynamically regulated by channels mediating Ca2+ exchanges with the extracellular medium or with intracellular stores, by proteins acting as Ca2+ buffers and by diffusion. In neurons, as in other electrically excitable cells, Ca2+ changes are mainly carried by Ca2+ entry from the exterior, through voltage-dependent Ca2+ channels. These channels are able to generate large increases in cytosolic Ca2+ in a few milliseconds. In contrast, in electrically non-excitable cells, the main source for Ca2+ is the endoplasmic reticulum (ER). Release of Ca2+ from the ER occurs through the inositol 1,4,5-trisphosphate receptor (InsP3R) or through the ryanodine receptor (RyR) in response to a hormonal stimulation (Fig. 1).

Fig. 1
figure 1

Schematic representation of the main processes regulating cytosolic Ca2+concentration in electrically non - excitable...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Berridge MJ (2012) Cell signalling biology. doi:10.1042/csb0001002. www.cellsignallingbiology.org

  • Dupont G, Combettes L (2006) Modelling the effect of specific inositol 1,4,5-trisphosphate receptor isoforms on cellular Ca2+ signals. Biol Cell 98:171–182

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Erneux C (1997) Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium 22:321–331

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Koukoui O, Clair C, Erneux C, Swillens S, Combettes L (2003) Ca2+ oscillations in hepatocytes do not require the modulation of InsP3 3-kinase activity by Ca2+. FEBS Lett 534:101–105

    Article  CAS  PubMed  Google Scholar 

  • Dupont G, Combettes L, Bird G, Putney J (2011) Calcium oscillations. Cold Spring Harb Perspect Biol 1:3, pii: a004226

    Google Scholar 

  • Falcke M (2004) Reading the pattern in living cells – the physics of Ca2+ signaling. Adv Phys 53:255–440

    Article  CAS  Google Scholar 

  • Friel D (1995) [Ca2+]i oscillations in sympathetic neurons: an experimental test of a theoretical model. Biophys J 68:1752–1766

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Györke S, Terentyev D (2008) Modulation of ryanodine receptor by luminal calcium and accessory proteins in health and cardiac disease. Cardiovasc Res 77:245–255

    Article  PubMed  Google Scholar 

  • Hattori M, Suzuki A, Higo T, Miyauchi H, Michikawa T, Nakamura T, Inoue T, Mikoshiba K (2004) Distinct roles of inositol 1,4,5-trisphosphate receptor types 1 and 3 in Ca2+ signalling. J Biol Chem 279:11967–11975

    Article  CAS  PubMed  Google Scholar 

  • Ionescu L, White C, Cheung K, Shuai J, Parker I, Pearson J, Foskett J (2007) Mode switching is the major mechanism of ligand regulation of InsP3 receptor calcium release channels. J Gen Physiol 130:631–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keener J, Sneyd J (2009) Mathematical physiology, 2nd edn. Springer, New-York

    Google Scholar 

  • Liu W, Tang F, Chen J (2010) Designing dynamical output feedback controllers for store-operated Ca2+ entry. Math Biosci 228:110–118

    Article  CAS  PubMed  Google Scholar 

  • Luik R, Wang B, Prakriya M, Wu A, Lewis R (2008) Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation. Nature 454:538–541

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mak D, Pearson J, Loong K, Datta S, Fernandez-Mongil M, Foskett J (2007) Rapid ligand-regulated gating kinetics of single inositol 1,4,5-trisphosphate receptors Ca2+ release channels. EMBO Rep 8:1044–1051

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oster A, Thomas B, Terman D, Fall C (2011) The low conductance mitochondrial permeability transition pore confers excitability and CICR wave propagation in a computational model. J Theor Biol 273:216–231

    Article  CAS  PubMed  Google Scholar 

  • Parys J, De Smedt H (2012) Inositol 1,4,5-trisphosphate and its receptors. In: Islam MS (ed) Calcium signaling, advances in experimental medicine and biology 740. Springer, Dordrecht, pp 255–279

    Google Scholar 

  • Restrepo J, Weiss J, Karma A (2008) Calsequestrin-mediated mechanism for cellular calcium transient alternans. Biophys J 95:3767–3789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Cell Biol 13:566–578

    Article  CAS  Google Scholar 

  • Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797:907–912

    Article  CAS  PubMed  Google Scholar 

  • Shannon T, Bers M (2000) Potentiation of fractional sarcoplasmic reticulum calcium release by total and free intra-sarcoplasmic reticulum calcium concentration. Biophys J 78:334–343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shuttleworth T (2009) Arachidonic acid, ARC channels and Orai proteins. Cell Calcium 45:602–610

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Siekmann I, Wagner L, Yule D, Crampin E, Sneyd J (2012) A kinetic model for type I and II IP3R accounting for mode changes. Biophys J 103:658–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thul R, Bellamy T, Roderick H, Bootman M, Coombes S (2008) Calcium oscillations. Adv Exp Med Biol 641:1–27

    Article  CAS  PubMed  Google Scholar 

  • Thul R, Coombes S, Roderick H, Bootman M (2012) Subcellular calcium dynamics in a whole-cell model of an atrial myocyte. Proc Natl Acad Sci U S A 109:2150–2155

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geneviève Dupont .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Dupont, G. (2013). Calcium Release, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_181-3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_181-3

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics