Skip to main content

Models of Extracellular Signal-Regulated Kinases

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 199 Accesses

Synonyms

ERK1, 2; MAPK1, 2; p42/p44 MAPK

Definition

Mitogen-activated protein (MAP) kinases consist of a family of protein kinases activated by a variety of cellular stimuli (Pearson et al. 2001). Four subfamilies of mammalian MAPK have been identified: ERK1 and ERK2: JNK; p38; and ERK5. Extracellular regulated kinase 1 and 2 (ERK1, ERK2), the original MAPK, was discovered as a kinase activity regulated by insulin. For a historical perspective on the discovery of the ERK cascade, see Blenis (1993). ERK1 and ERK2 (also known as p44 and p42 MAPK) signaling is key for the induction of synaptic plasticity and is essential for learning and memory (Thomas and Huganir 2004).

Detailed Description

The core ERK signaling module consists of a three-tiered kinase cascade: the MAPKKK Raf1 or B-Raf that phosphorylates and activates the MAPKK MEK1/2 that in turn phosphorylates and activates the MAPK ERK1/2. The small G protein Ras activates Raf, the first kinase in the cascade. Activation of...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ajay SM, Bhalla US (2004) A role for ERKII in synaptic pattern selectivity on the time-scale of minutes. Eur J Neurosci 20(10):2671–2680

    Article  PubMed  Google Scholar 

  • Ajay SM, Bhalla US (2007) A propagating ERKII switch forms zones of elevated dendritic activation correlated with plasticity. HFSP J 1(1):49–66

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bhalla US, Iyengar R (1999) Emergent properties of networks of biological signaling pathways. Science 283(5400):381–387

    Article  CAS  PubMed  Google Scholar 

  • Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci U S A 90(13):5889–5892

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cullen PJ, Lockyer PJ (2002) Integration of calcium and ras signalling. Nat Rev Mol Cell Biol 3(5):339–348

    Article  CAS  PubMed  Google Scholar 

  • Emery AC, Eiden MV et al (2013) Rapgef2 connects GPCR-mediated cAMP signals to ERK activation in neuronal and endocrine cells. Sci Signal 6(281):ra51

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferrell JE Jr, Machleder EM (1998) The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280(5365):895–898

    Article  CAS  PubMed  Google Scholar 

  • Hawes BE, van Biesen T et al (1995) Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation. J Biol Chem 270(29):17148–17153

    Article  CAS  PubMed  Google Scholar 

  • Kholodenko BN (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur J Biochem 267(6):1583–1588

    Article  CAS  PubMed  Google Scholar 

  • Kuroda S, Schweighofer N et al (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21(15):5693–5702

    Google Scholar 

  • Neves SR, Tsokas P et al (2008) Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133(4):666–680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearson G, Robinson F et al (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22(2):153–183

    CAS  PubMed  Google Scholar 

  • Pettigrew DB, Smolen P et al (2005) Dynamic properties of regulatory motifs associated with induction of three temporal domains of memory in aplysia. J Comput Neurosci 18(2):163–181

    Article  PubMed  Google Scholar 

  • Song RS, Massenburg et al (2013) ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion. Proc Natl Acad Sci U S A. 110(38):15437–42

    Google Scholar 

  • Thomas GM, Huganir RL (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5(3):173–183

    Article  CAS  PubMed  Google Scholar 

  • Williams NG, Zhong H et al (1998) Differential coupling of alpha1-, alpha2-, and beta-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J Biol Chem 273(38):24624–24632

    Article  CAS  PubMed  Google Scholar 

  • Yoon S and Seger R (2006) The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions. Growth Factors 24(1):21–44

    Google Scholar 

  • Zhang Y, Liu RY et al (2012) Computational design of enhanced learning protocols. Nat Neurosci 15(2):294–297

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana R. Neves Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Neves, S.R. (2013). Models of Extracellular Signal-Regulated Kinases. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_188-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_188-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics