Skip to main content

Modeling Ion Concentrations

Encyclopedia of Computational Neuroscience

Synonyms

Ionic currents; Ionic diffusion; Modeling intracellular ionic concentrations

Definition

Realistic models for ionic concentration changes should capture essential aspects of ionic dynamics which are relevant for neuronal function. Ionic concentration changes affect many ionic channels and thereby also the membrane voltage. In addition, ionic concentration changes (e.g., calcium concentration changes) influence also intracellular biochemical signaling cascades. Ionic dynamics is an important determinant of neuronal inhibition, excitability, and synaptic plasticity. We will first introduce how to model intracellular ionic dynamics in general and then describe briefly some details relevant for modeling calcium and chloride dynamics.

Detailed Description

Ion Influx

Ions enter the neuron via ion channels in the cell membrane. This influx can be modeled as a linear ohmic current:

$$ {I}_{\mathrm{ion}}={g}_{\mathrm{ion}}\ \left(V-{E}_{\mathrm{ion}}\right) $$

where Vis the membrane...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bhalla US, Wils S (2010) Reaction-diffusion modeling. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, London, pp 61–92

    Google Scholar 

  • Blackwell KT (2013) Approaches and tools for modeling signaling pathways and calcium dynamics in neurons. J Neurosci Methods 220:131–140

    Article  PubMed  CAS  Google Scholar 

  • De Koninck Y (2007) Altered chloride homeostasis in neurological disorders: a new target. Curr Opin Pharmacol 7:93–99

    Article  PubMed  Google Scholar 

  • De Schutter E (2010) Reaction-diffusion modeling. In: De Schutter E (ed) Computational modeling methods for neuroscientists. MIT Press, London, pp 93–106

    Google Scholar 

  • De Schutter E, Smolen P (1998) Calcium dynamics in large neuronal models. In: Koch C, Segdev I (eds) Methods on neuronal modeling. MIT Press, London, pp 211–250

    Google Scholar 

  • Doyon N, Prescott SA, Castonguay A, Godin AG, Kröger H, De Koninck Y (2011) Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis. PLoS Comput Biol 7:e1002149

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hines ML, Carnevale NT (2000) Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Comput 12:995–1007

    Article  PubMed  CAS  Google Scholar 

  • Holcman D, Marchewka A, Schuss Z (2005) Survival probability of diffusion with trapping in cellular neurobiology. Phys Rev E Stat Nonlin Soft Matter Phys 72:031910

    Article  PubMed  Google Scholar 

  • Jedlicka P, Thomas D, Gutkin BS, Backus KH (2011) Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission. Hippocampus 21:885–898

    PubMed  CAS  Google Scholar 

  • Kuner T, Augustine GJ (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27:447–459

    Article  PubMed  CAS  Google Scholar 

  • Lewin N, Aksay E, Clancy CE (2012) Computational modeling reveals dendritic origins of GABA-A mediated excitation in CA1 pyramidal neurons. PLoS One 7:e47250

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lopreore LC, Bartol TM, Caggon JS, Keller DX, Sosinsky GE, Ellisman MH, Sejnowski TJ (2008) Computational modeling of three-dimensional electrodiffusion in biological systems: application to the node of Ranvier. Biophys J 95:2624–2635

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Qian N, Sejnowski TJ (1989) An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biol Cybern 62:1–15

    Article  Google Scholar 

  • Smith GD (2001) Modeling local and global calcium signals using reaction-diffusion equations. In: De S, De Schutter E (eds) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 49–86

    Google Scholar 

  • Sterrat D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling in neuroscience. Cambridge University Press, New York

    Book  Google Scholar 

  • Stiles JR, Bartol TM (2001) Monte carlo methods for simulating realistic synaptic microphysiology using Mcell. In: De Schutter E (ed) Computational neuroscience: realistic modeling for experimentalists. CRC Press, Boca Raton, pp 87–128

    Google Scholar 

Further Reading

  • Carnevale NT, Rosenthal S (1992) Kinetics of diffusion in a spherical cell. I. No solute buffering. J Neurosci Methods 41:205–216

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel Santamaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Mohapatra, N., Deans, H.T., Santamaria, F., Jedlicka, P. (2014). Modeling Ion Concentrations. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_239-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_239-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Modeling Ion Concentrations
    Published:
    19 October 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_239-3

  2. Original

    Modeling Ion Concentrations
    Published:
    29 March 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_239-2