Skip to main content

Modeling the Axon

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 579 Accesses

Definition

Computational modeling of axons is used to determine the action potential initiation and propagation properties along these long and highly branched structures. Issues under investigation include the site and threshold of action potential initiation, propagation speed in unmyelinated and myelinated axons, and safety factors of propagation through branch points and other geometrical inhomogeneities, such as presynaptic boutons. Modeling allows exploration of the interaction between axonal morphology (diameters and branching structure) and passive and active membrane properties in determining the speed and reliability of action potential propagation. This can include the effects of ion channel noise. Modeling is also used to explore axonal development, including growth cone guidance and branching.

Detailed Description

The axon is the principle communication pathway from one neuron to another. Brief voltage pulses called action potentials (AP) are initiated near the cell body...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Carnevale NT, Hines M (2006) The NEURON book. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Coggan JS, Prescott SA, Bartol TM, Sejnowski TJ (2010) Imbalance of ionic conductances contributes to diverse symptoms of demyelination. Proc Natl Acad Sci USA 107:20602–20609

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Debanne D (2004) Information processing in the axon. Nat Rev Neurosci 5:304–316

    Article  CAS  PubMed  Google Scholar 

  • Faisal AA, Laughlin SB (2007) Stochastic simulations on the reliability of action potential propagation in thin axons. PLoS Comput Biol 3(5):e79

    Article  PubMed Central  PubMed  Google Scholar 

  • Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9:292–303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldstein SS, Rall W (1974) Changes in action potential shape and velocity for changing core conductor geometry. Biophys J 14:731–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldwyn JH, Shea-Brown E (2011) The what and where of adding channel noise to the Hodgkin-Huxley equations. PLoS Comput Biol 7(11):e1002247

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham BP, van Ooyen A (2006) Mathematical modelling and numerical simulation of the morphological development of neurons. BMC Neurosci 7(Suppl 1):S9

    Article  PubMed Central  PubMed  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol (Lond) 117:500–544

    CAS  Google Scholar 

  • Koene RA, Tijms B, van Hees P, Postma F, de Ridder A, Ramakers GJ, van Pelt J, van Ooyen A (2009) NETMORPH: a framework for the stochastic generation of large scale neuronal networks with realistic neuron morphologies. Neuroinformatics 7(3):195–210

    Article  PubMed  Google Scholar 

  • Krottje J, van Ooyen A (2007) A mathematical framework for modelling axon guidance. Bull Math Biol 69(1):3–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Manor Y, Koch C, Segev I (1991) Effect of geometrical irregularities on propagation delay in axonal trees. Biophys J 60:1424–1437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nygren A, Halter JA (1999) A general approach to modeling conduction and concentration dynamics in excitable cells of concentric cylindrical geometry. J Theor Biol 199:329–358

    Article  CAS  PubMed  Google Scholar 

  • Parnas I, Segev I (1979) A mathematical model for conduction of action potentials along bifurcating axons. J Physiol (Lond) 295:323–343

    CAS  Google Scholar 

  • Schneidman E, Freedman B, Segev I (1998) Ion channel stochasticity may be critical in determining the reliability and precision in spike timing. Neural Comput 10:1679–1703

    Article  CAS  PubMed  Google Scholar 

  • Segev I, Schneidman E (1999) Axons as computing devices: basic insights gained from models. J Physiol Paris 93:263–270

    Article  CAS  PubMed  Google Scholar 

  • Segev I, Rinzel J, Shepherd GM (eds) (1995) The theoretical foundation of dendritic function: the collected papers of Wilfrid Rall. Bradford Book/MIT Press, Cambridge, MA

    Google Scholar 

  • Sterratt D, Graham B, Gillies A, Willshaw D (2011) Principles of computational modelling in neuroscience. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • van Ooyen A (ed) (2003) Modeling neural development. Bradford Book/MIT Press, Cambridge, MA

    Google Scholar 

  • van Ooyen A (2011) Using theoretical models to analyse neural development. Nat Rev Neurosci 12:311–326

    Article  PubMed  Google Scholar 

  • Zubler F, Douglas R (2009) A framework for modeling the growth and development of neurons and networks. Front Comput Neurosci 3:25

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce Graham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Graham, B. (2014). Modeling the Axon. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_241-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_241-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics