Skip to main content

Multistability Arising from Synaptic Dynamics

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

The strength of a synapse imparted by a presynaptic neuron onto its postsynaptic target can change as a function of the activity of the presynaptic neuron. This change is referred to as short-term synaptic plasticity. Networks of neurons connected with plastic synapses have the potential ability to display multiple stable solutions either at different parameter values or for the same set of parameters. This latter property is known as multistability. Self-consistency between the network frequency and the level of plasticity is needed to ensure multistability.

Description

The central nervous system (CNS) controls a vast array of behaviors that include both basic functions such as processing of sensory input (Sharp et al. 1990), regulating circadian rhythms (Piggins and Guilding 2011), coordinating motor output (Marder and Calabrese 1996), and more complex functions such as spatial navigation (O’Keefe 1991), decision making, and memory formation (Treves and Rolls 1994)....

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275:220–224

    Article  PubMed  CAS  Google Scholar 

  • Bose A, Booth V (2011) Co-existent activity patterns in inhibitory neuronal networks with short-term synaptic depression. J Theor Biol 272:42–54

    Article  PubMed  Google Scholar 

  • Bose A, Manor Y, Nadim F (2001) Bistable oscillations arising from synaptic depression. SIAM J Appl Math 62:706–727

    Article  Google Scholar 

  • Carver S, Roth E, Cowan N, Fortune E (2008) Synaptic plasticity can produce and enhance direction selectivity. PLoS Comput Biol 4:e32

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Chandrasekaran L, Matveev V, Bose A (2009) Multistability of clustered states in a globally inhibitory network. Physica D Nonlinear Phenom 238:253–263

    Article  Google Scholar 

  • Cook D, Schwindt P, Grand L, Spain W (2003) Synaptic depression in the localization of sound. Nature 421:66–70

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout GB, Kopell N (1991) Multiple pulse interactions and averaging in systems of coupled neural oscillators. J Math Biol 29:33–44

    Google Scholar 

  • Izhikevich E, Desai N, Walcott E, Hoppensteadt F (2003) Bursts as a unit of neural information: selective communication via resonance. Trends Neurosci 26:161–167

    Article  PubMed  CAS  Google Scholar 

  • Lewis JE, Maler L (2002) Dynamics of electrosensory feedback: short-term plasticity and inhibition in a parallel fiber pathway. J Neurophysiol 88:1695–1706

    PubMed  Google Scholar 

  • Manor Y, Nadim F (2001) Synaptic depression mediates bistability in neuronal networks with recurrent inhibitory connectivity. J Neurosci 21:9460–9470

    PubMed  CAS  Google Scholar 

  • Manor Y, Bose A, Booth V, Nadim F (2003) The contribution of synaptic depression to phase maintenance in a model rhythmic network. J Neurophysiol 90:3513–3528

    Article  PubMed  Google Scholar 

  • Marder E, Calabrese R (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    PubMed  CAS  Google Scholar 

  • O’Keefe J (1991) The hippocampal cognitive map and navigational strategies. In: Paillard J (ed) Brain and space. Oxford University Press, New York, pp 273–295

    Google Scholar 

  • Piggins H, Guilding C (2011) The neural circadian system of mammals. Essays Biochem 49:1–17

    PubMed  CAS  Google Scholar 

  • Sharp PE, Muller RU, Kubie JL (1990) Firing properties of hippocampal neurons in a visually-symmetrical stimulus environment: contributions of multiple sensory cues and mnemonic processes. J Neurosci 10:3093–3105

    PubMed  CAS  Google Scholar 

  • Tabak J, Senn W, O’Donovan M, Rinzel J (2000) Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J Neurosci 20:3041–3056

    PubMed  CAS  Google Scholar 

  • Thomson AM (2000) Molecular frequency filters at central synapses. Prog Neurobiol 62:159–196

    Article  PubMed  CAS  Google Scholar 

  • Treves A, Rolls ET (1994) A computational analysis of the role of the hippocampus in memory. Hippocampus 4:373–391

    Article  Google Scholar 

  • Tsodyks M, Markram H (1997) The neural code between neocortical pyramidal neurons depends on the transmitter release probability. Proc Natl Acad Sci U S A 94:719–723

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tsodyks M, Uziel A, Markram H (2000) Synchrony generation in recurrent networks with frequency-dependent synapses. J Neurosci 20(1–5):RC50

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF DMS 1122291 (AB, FN) and NIH MH-60605 (FN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabha Bose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Bose, A., Nadim, F. (2014). Multistability Arising from Synaptic Dynamics. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_272-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_272-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics