Skip to main content

Capacitance, Membrane

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

The membrane capacitance results from the fact that the plasma membrane acts as a capacitor: the phospholipid bilayer is a thin insulator separating two electrolytic media, the extracellular space and the cytoplasm. The membrane capacitance is proportional to the cell surface area and, together with the membrane resistance, determines the membrane time constant which dictates how fast the cell membrane potential responds to the flow of ion channel currents.

Detailed Description

Membrane capacitance is the electrical capacitance associated with a biological membrane, expressed in units of Farads (F). The electrical capacitance of a biological membrane results from the membrane composition of a bilayer of mostly phospholipids that form an insulating matrix to which proteins are attached or embedded. The total membrane capacitance c m of a cell is a quantity directly proportional to the membrane surface area and the dielectric properties of the membrane, provided that the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alberts B, Wilson JH, Hunt T (2008) Molecular biology of the cell, 5th edn. Garland Science, New York

    Google Scholar 

  • Gentet LJ, Stuart GJ, Clements JD (2000) Direct measurement of specific membrane capacitance in neurons. Biophys J 79:314–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Golowasch J, Thomas G, Taylor AL, Patel A, Pineda A, Khalil C, Nadim F (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102:2161–2175

    Article  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF, Katz B (1952) Measurement of current-voltage relations in the membrane of the giant axon of Loligo. J Physiol 116:424–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holmes WR, Segev I, Rall W (1992) Interpretation of time constant and electrotonic length estimates in multicylinder or branched neuronal structures. J Neurophysiol 68:1401–1420

    CAS  PubMed  Google Scholar 

  • Koch C (1999) Biophysics of computation: information processing in single neurons. Oxford University Press, New York

    Google Scholar 

  • Matsumoto G, Tasaki I (1977) A study of conduction velocity in nonmyelinated nerve fibers. Biophys J 20:1–13

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Neef A, Heinemann C, Moser T (2007) Measurements of membrane patch capacitance using a software-based lock-in system. Pflugers Arch 454:335–344

    Article  CAS  PubMed  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci USA 79:6712–6716

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niles WD, Levis RA, Cohen FS (1988) Planar bilayer membranes made from phospholipid monolayers form by a thinning process. Biophys J 53:327–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rall W (1977) Core conductor theory and cable properties of neurons. In: Kandel ER (ed) Handbook of physiology (Section 1, The nervous system I, cellular biology of neurons). American Physiological Society, Bethesda, pp 39–97

    Google Scholar 

  • Solsona C, Innocenti B, Fernandez JM (1998) Regulation of exocytotic fusion by cell inflation. Biophys J 74:1061–1073

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streit J, Lux HD (1987) Voltage dependent calcium currents in PC12 growth cones and cells during NGF-induced cell growth. Pflugers Arch 408:634–641

    Article  CAS  PubMed  Google Scholar 

  • Taylor AL (2012) What we talk about when we talk about capacitance measured with the voltage-clamp step method. J Comput Neurosci 32:167–175

    Article  PubMed Central  PubMed  Google Scholar 

  • White WE, Hooper SL (2013) Contamination of current-clamp measurement of neuron capacitance by voltage-dependent phenomena. J Neurophysiol 110(1):257–68

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grants MH064711 and MH060605 and NSF grant DMS 1122291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Golowasch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Golowasch, J., Nadim, F. (2014). Capacitance, Membrane. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_32-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_32-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics