Skip to main content

Visual Motion Detection in Drosophila

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience
  • 250 Accesses

Synonyms

Elementary motion detection, Motion vision

Definition

Visual motion detection describes the process by which directional information about local image motion is extracted from the spatiotemporal excitation pattern of the photoreceptor array.

Detailed Description

Visual motion information is of utmost importance for all animals including man: motion information can signal the direction in which a prey, a predator, or a conspecific is moving. Furthermore, motion information can also signal the movement of the observer in space: during movement, the images of the environment will constantly shift across the observer’s eyes, causing an optic flow that is specific for the various kinds of maneuvers executed. However, at the level of the photoreceptors, the direction in which the image is shifting locally is not explicitly represented. Rather, directional motion information needs to be extracted from the photoreceptor array by comparing the signals of neighboring photoreceptors over...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akerbom J et al (2012) Optimization of a GCaMP Calcium indicator for neural activity imaging. J Neurosci 32:13819–13840

    Article  Google Scholar 

  • Anstis SM, Rogers BJ (1975) Illusory reversal of visual depth and movement during changes of contrast. Vision Res 15:957–961

    Article  CAS  PubMed  Google Scholar 

  • Bahl A, Ammer G, Schilling T, Borst A (2013) Object tracking in motion-blind flies. Nat Neurosci 16:730–738

    Article  CAS  PubMed  Google Scholar 

  • Bausenwein B, Fischbach KF (1992) Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res 270:25–35

    Article  CAS  PubMed  Google Scholar 

  • Bausenwein B, Dittrich APM, Fischbach KF (1992) The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res 267:17–28

    Article  CAS  PubMed  Google Scholar 

  • Borst A (2009) Drosophila’s view on insect vision. Curr Biol 19:R36–R47

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Bahde S (1986) What kind of movement detector is triggering the landing response of the housefly? Biol Cybern 55:59–69

    Article  Google Scholar 

  • Borst A, Egelhaaf M (1989) Principles of visual motion detection. Trends Neurosci 12:297–306

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Egelhaaf M (1990) Direction selectivity of fly motion-sensitive neurons is computed in a two-stage process. Proc Natl Acad Sci U S A 87:9363–9367

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borst A, Egelhaaf M, Haag J (1995) Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J Comput Neurosci 2:5–18

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Reisenman C, Haag J (2003) Adaptation of response transients in fly motion vision. II: model studies. Vision Res 43:1309–1322

    Article  PubMed  Google Scholar 

  • Borst A, Flanagin V, Sompolinsky H (2005) Adaptation without parameter change: dynamic gain control in motion detection. Proc Natl Acad Sci U S A 102:6172–6176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Braitenberg V (1967) Patterns of projection in visual system of fly. 1. Retina-lamina projections. Exp Brain Res 3:271–298

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415

    CAS  PubMed  Google Scholar 

  • Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26:695–702

    Article  CAS  PubMed  Google Scholar 

  • Buchner E (1976) Elementary movement detectors in an insect visual system. Biol Cybern 24:86–101

    Article  Google Scholar 

  • Buchner E, Buchner S, Bülthoff I (1984) Deoxyglucose mapping of nervous activity induced in Drosophila brain by visual movement. J Comp Physiol A 155:471–483

    Article  Google Scholar 

  • Cajal SR, Sanchez D (1915) Contribucion al conocimiento de los centros nerviosos de los insectos. Imprenta de Hijos de Nicholas. Moja, Madrid

    Google Scholar 

  • Clark DA, Bursztyn L, Horowitz MA, Schnitzer MJ, Clandinin TR (2011) Defining the computational structure of the motion detector in Drosophila. Neuron 70:1165–1177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cuntz H, Foerstner F, Haag J, Borst A (2008) The morphological identity of insect dendrites. PLoS Comp Biol 4: doi:10.1371/journal.pcbi.1000251

    Google Scholar 

  • DeVoe RD (1980) Movement sensitivities of cells in the fly’s medulla. J Comp Physiol A 138:93–119

    Article  Google Scholar 

  • Douglass JK, Strausfeld NJ (1995) Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons. J Neurosci 15:5596–5611

    CAS  PubMed  Google Scholar 

  • Douglass JK, Strausfeld NJ (1996) Visual motion-detection circuits in flies: parallel direction -and non-direction-sensitive pathways between the medulla and lobula plate. J Neurosci 16:4551–4562

    CAS  PubMed  Google Scholar 

  • Eckert H (1973) Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L. Kybernetik 14:1–23

    Article  CAS  PubMed  Google Scholar 

  • Egelhaaf M, Borst A (1989) Transient and steady-state response properties of movement detectors. J Opt Soc Am A 6:116–127

    Article  CAS  PubMed  Google Scholar 

  • Egelhaaf M, Borst A, Reichardt W (1989) Computational structure of a biological motion detection system as revealed by local detector analysis in the fly’s nervous system. J Opt Soc Am A 6:1070–1087

    Article  CAS  PubMed  Google Scholar 

  • Eichner H, Joesch M, Schnell B, Reiff D, Borst A (2011) Internal structure of the fly elementary motion detector. Neuron 70:1155–1164

    Article  CAS  PubMed  Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2:15–28

    Article  CAS  PubMed  Google Scholar 

  • Fischbach KF, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Article  Google Scholar 

  • Freifeld L, Clark DA, Schnitzer MJ, Horowitz MA, Clandinin TR (2013) GABAergic lateral interactions tune the early stages of visual processing in Drosophila. Neuron 78:1075–1089

    Article  CAS  PubMed  Google Scholar 

  • Geiger G, Nässel DR (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurons. Nature 293:398–399

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, Penisten DK, DeVoe RD (1991) Discrimination of visual motion from flicker by identified neurons in the medulla of the fleshfly Sarcophaga bullata. J Comp Physiol A 168:653–673

    Article  CAS  PubMed  Google Scholar 

  • Goetz KG (1964) Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

    Article  Google Scholar 

  • Goetz KG (1965) Die optischen Übertragungseigenschaften der Komplexaugen von Drosophila. Kybernetik 2:215–221

    Article  Google Scholar 

  • Haag J, Denk W, Borst A (2004) Fly motion vision is based on Reichardt detectors regardless of the signal-to-noise ratio. Proc Natl Acad Sci U S A 101:16333–16338

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haikala V, Joesch M, Borst A, Mauss A (2013) Optogenetic control of fly optomotor responses. J Neurosci 33:13927–13934

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC (1989) A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339:704–706

    Article  CAS  PubMed  Google Scholar 

  • Hardie RC, Raghu P (2001) Visual transduction in Drosophila. Nature 413:186–193

    Article  CAS  PubMed  Google Scholar 

  • Hassenstein B, Reichardt W (1956) Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z Naturforsch 11b:513–524

    Google Scholar 

  • Hausen K (1984) The lobula-complex of the fly: structure, function and significance in visual behaviour. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York/London, pp 523–559

    Chapter  Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw response in the blowfly Calliphora erythrocephala. Proc R Soc Lond B 219:211–216

    Article  Google Scholar 

  • Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol A 117:127–162

    Article  Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blind (H31): a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol A 124:287–296

    Article  Google Scholar 

  • Hengstenberg R, Hausen K, Hengstenberg B (1982) The number and structure of giant vertical cells (VS) in the lobula plate of the blowfly Calliphora erythrocephala. J Comp Physiol A 149:163–177

    Article  Google Scholar 

  • Jaervilehto M, Zettler F (1971) Localized intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina. Z Vergl Physiol 75:422–440

    Article  Google Scholar 

  • Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:368–374

    Article  CAS  PubMed  Google Scholar 

  • Joesch M, Schnell B, Raghu S, Reiff D, Borst A (2010) ON and OFF pathways in Drosophila motion vision. Nature 468:300–304

    Article  CAS  PubMed  Google Scholar 

  • Joesch M, Weber F, Eichner H, Borst A (2013) Functional specialization of parallel motion detection circuits in the fly. J Neurosci 33:902–905

    Article  CAS  PubMed  Google Scholar 

  • Kirschfeld K (1967) Die Projektion der optischen Umwelt auf das Raster der Rhabdomere im Komplexauge von MUSCA. Exp Brain Res 3:248–270

    Article  CAS  PubMed  Google Scholar 

  • Laughlin SB, Howard J, Blakeslee B (1987) Synaptic limitation to contrast coding in the retina of the blowfly Calliphora. Proc R Soc Lond B 231:437–467

    Article  CAS  PubMed  Google Scholar 

  • Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A, Dickson BJ, Reiff DF, Hopp E, Borst A (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216

    Article  CAS  PubMed  Google Scholar 

  • Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305:232–263

    Article  CAS  PubMed  Google Scholar 

  • Pfeiffer BD, Jenett A, Hammonds AS, Ngo TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR, Mungall CM, Svirskas R, Kadonaga JT, Doe CQ, Eisen MB, Celniker SE, Rubin GM (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raghu S, Joesch M, Borst A, Reiff D (2007) Synaptic organization of lobula plate tangential cells in Drosophila: gamma-aminobutyric acid receptors and chemical release sites. J Comp Neurol 502:598–610

    Article  CAS  PubMed  Google Scholar 

  • Reichardt W (1961) Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. In: Rosenblith WA (ed) Sensory communication. MIT Press/Wiley, New York/London, pp 303–317

    Google Scholar 

  • Reichardt W (1987) Evaluation of optical motion information by movement detectors. J Comp Physiol A 161:533–547

    Article  CAS  PubMed  Google Scholar 

  • Reisenman C, Haag J, Borst A (2003) Adaptation of response transients in fly motion vision. I: experiments. Vision Res 43:1291–1307

    Article  CAS  PubMed  Google Scholar 

  • Riehle A, Franceschini N (1984) Motion detection flies: parametric control over ON-OFF pathways. Exp Brain Res 54:390–394

    Article  CAS  PubMed  Google Scholar 

  • Rister J, Pauls D, Schnell B, Ting CY, Lee CH, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M (2007) Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56:155–170

    Article  CAS  PubMed  Google Scholar 

  • Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF (2010) Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol 103:1646–1657

    Article  CAS  PubMed  Google Scholar 

  • Schnell B, Raghu S, Nern A, Borst A (2012) Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J Comp Physiol A 198:389–395

    Article  Google Scholar 

  • Scott EK, Raabe T, Luo L (2002) Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J Comp Neurol 454:470–481

    Article  PubMed  Google Scholar 

  • Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR (2013) Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:111–127

    Article  CAS  PubMed  Google Scholar 

  • Single S, Borst A (1998) Dendritic integration and its role in computing image velocity. Science 281:1848–1850

    Article  CAS  PubMed  Google Scholar 

  • Straka H, Ammermüller J (1991) Temporal resolving power of blowfly visual system: effects of decamethonium and hyperpolarization on responses of laminar monopolar neurons. J Comp Physiol A 168:129–139

    Article  Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Takemura SY, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509:493–513

    Article  PubMed Central  PubMed  Google Scholar 

  • Takemura SY, Karuppudurai T, Ting CY, Lu Z, Lee CH, Meinertzhagen I (2011) Cholinergic circuits integrate neighboring visual signals in a Drosophila motion detection pathway. Curr Biol 21:2077–2084

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takemura SY et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB (2013) Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79:128–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venken KJT, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng L, Nikolaev A, Wardill TJ, O’Kane CJ, de Polavieja GG, Juusola M (2009) Network adaptation improves temporal representation of naturalistic stimuli in Drosophila eye: I. Dynamics. PLoS One 4(1):e4307

    Article  PubMed Central  PubMed  Google Scholar 

Further Reading

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Borst .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Borst, A. (2014). Visual Motion Detection in Drosophila . In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_329-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_329-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Published:
    30 May 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_329-2

  2. Original

    Published:
    14 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_329-1