Skip to main content

Polarization Vision

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Polarization vision is the ability of animals to detect the oscillation plane of the electric field vector of light (E-vector) and use it for behavioral responses. This ability is widespread across animal taxa but is particularly prominent within invertebrates, especially arthropods. Polarized light can be either used implicitly for enhancing image contrast and for adding another dimension to the color vision system, or it can be explicitly used as a separate vision channel for communication purposes and for encoding global directions for an internal compass. Polarized light in nature is produced either by reflection at shiny surfaces or by scattering (e.g., in the atmosphere) of unpolarized sunlight. This results in the presence of polarized light in many different habitats, including underwater. The most prominent source of polarized light is the skylight polarization pattern, which contains information about the position of the sun in the sky and is thus used for...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Baird E et al (2012) The dung beetle dance: an orientation behaviour? PLoS One 7:e30211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beltrami G, Bertolucci C, Parretta A, Petrucci F, Foà A (2010) A sky polarization compass in lizards: the central role of the parietal eye. J Exp Biol 213:2048–2054

    CAS  PubMed  Google Scholar 

  • Blum M, Labhart T (2000) Photoreceptor visual fields, ommatidial array, and receptor axon projections in the polarisation-sensitive dorsal rim area of the cricket compound eye. J Comp Physiol A 186:119–128

    CAS  PubMed  Google Scholar 

  • Brunner D, Labhart T (1987) Behavioural evidence for polarization vision in crickets. Physiol Entomol 12:1–10

    Google Scholar 

  • Chiou T-H et al (2008) Circular polarization vision in a stomatopod crustacean. Curr Biol 18:429–434

    CAS  PubMed  Google Scholar 

  • Cronin TW, Marshall J (2011) Patterns and properties of polarized light in air and water. Philos Trans R Soc Lond B Biol Sci 366:619–626

    PubMed Central  PubMed  Google Scholar 

  • Dacke M et al (2002) A specialized dorsal rim area for polarized light detection in the compound eye of the scarab beetle Pachysoma striatum. J Comp Physiol A 188:211–216

    CAS  Google Scholar 

  • Dacke M et al (2003) Animal behaviour: insect orientation to polarized moonlight. Nature 424:33

    CAS  PubMed  Google Scholar 

  • Duelli P (1975) A fovea for e-vector orientation in the eye of Cataglyphis bicolor (Formicidae, Hymenoptera). J Comp Physiol A 102:43–56

    Google Scholar 

  • Eggers A et al (1993) The dorsal rim area of the compound eye and polarization vision in the desert locust (Schistocerca gregaria). In: Sensory systems in arthropods. Birkhäuser, Basel, pp 101–109

    Google Scholar 

  • el Jundi B, Homberg U (2010) Evidence for the possible existence of a second polarization-vision pathway in the locust brain. J Insect Physiol 56:971–979

    PubMed  Google Scholar 

  • el Jundi B, Homberg U (2012) Receptive field properties and intensity-response functions of polarization-sensitive neurons of the optic tubercle in gregarious and solitarius locusts. J Neurophysiol 108:1695–1710

    PubMed  Google Scholar 

  • el Jundi B et al (2011) A distinct layer of the medulla integrates sky compass signals in the brain of an insect. PLoS One 6:e27855

    PubMed Central  PubMed  Google Scholar 

  • Froy O et al (2003) Illuminating the circadian clock in monarch butterfly migration. Science 300:1303–1305

    CAS  PubMed  Google Scholar 

  • Hanesch U et al (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–366

    Google Scholar 

  • Hawryshyn CW (2010) Ultraviolet polarization vision and visually guided behavior in fishes. Brain Behav Evol 75:186–194

    PubMed  Google Scholar 

  • Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997

    CAS  PubMed  Google Scholar 

  • Heinze S, Homberg U (2008) Neuroarchitecture of the central complex of the desert locust: intrinsic and columnar neurons. J Comp Neurol 511:454–478

    PubMed  Google Scholar 

  • Heinze S, Homberg U (2009) Linking the input to the output: new sets of neurons complement the polarization vision network in the locust central complex. J Neurosci 29:4911–4921

    CAS  PubMed  Google Scholar 

  • Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345–358

    CAS  PubMed  Google Scholar 

  • Heinze S, Reppert SM (2012) Anatomical basis of sun compass navigation I: the general layout of the monarch butterfly brain. J Comp Neurol 520:1599–1628

    PubMed  Google Scholar 

  • Heinze S et al (2009) Transformation of polarized light information in the central complex of the locust. J Neurosci 29:11783–11793

    CAS  PubMed  Google Scholar 

  • Heinze S et al (2013) Anatomical basis of sun compass navigation II: the neuronal composition of the central complex of the monarch butterfly. J Comp Neurol 521:267–298

    PubMed  Google Scholar 

  • Henze MJ (2009) Two facets of insect vision: polarization sensitivity and visual pigments. Doctoral thesis, Universität Zürich

    Google Scholar 

  • Henze MJ, Labhart T (2007) Haze, clouds and limited sky visibility: polarotactic orientation of crickets under difficult stimulus conditions. J Exp Biol 210:3266–3276

    PubMed  Google Scholar 

  • Henze MJ et al (2012) Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus. BMC Evol Biol 12:163

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herzmann D, Labhart T (1989) Spectral sensitivity and absolute threshold of polarization vision in crickets: a behavioral study. J Comp Physiol A 165:315–319

    Google Scholar 

  • Homberg U, Paech A (2002) Ultrastructure and orientation of ommatidia in the dorsal rim area of the locust compound eye. Arthropod Struct Dev 30:271–280

    PubMed  Google Scholar 

  • Homberg U, Würden S (1997) Movement-sensitive, polarization-sensitive, and light-sensitive neurons of the medulla and accessory medulla of the locust, Schistocerca gregaria. J Comp Neurol 386:329–346

    CAS  PubMed  Google Scholar 

  • Homberg U et al (2003) Organization and neural connections of the anterior optic tubercle in the brain of the locust, Schistocerca gregaria. J Comp Neurol 462:415–430

    PubMed  Google Scholar 

  • Homberg U et al (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B Biol Sci 366:680–687

    PubMed Central  PubMed  Google Scholar 

  • Horváth G, Varjú D (2004) Polarized light in animal vision. Springer, Heidelberg

    Google Scholar 

  • Iwano M et al (2010) Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain. J Comp Neurol 518:366–388

    PubMed  Google Scholar 

  • Kahsai L, Winther AME (2011) Chemical neuroanatomy of the Drosophila central complex: distribution of multiple neuropeptides in relation to neurotransmitters. J Comp Neurol 519:290–315

    CAS  PubMed  Google Scholar 

  • Kelber A (1999) Why “false” colours are seen by butterflies. Nature 402:251

    CAS  PubMed  Google Scholar 

  • Kelber A et al (2001) Polarisation-dependent colour vision in Papilio butterflies. J Exp Biol 204:2469–2480

    CAS  PubMed  Google Scholar 

  • Kinoshita M et al (2007) Spectral properties of identified polarized-light sensitive interneurons in the brain of the desert locust Schistocerca gregaria. J Exp Biol 210:1350–1361

    PubMed  Google Scholar 

  • Kleinlogel S, Marshall NJ (2006) Electrophysiological evidence for linear polarization sensitivity in the compound eyes of the stomatopod crustacean Gonodactylus chiragra. J Exp Biol 209:4262–4272

    PubMed  Google Scholar 

  • Labhart T (1980) Specialized photoreceptors at the dorsal rim of the honeybee’s compound eye: polarizational and angular sensitivity. J Comp Physiol A 141:19–30

    Google Scholar 

  • Labhart T (1986) The electrophysiology of photoreceptors in different eye regions of the desert ant, Cataglyphis bicolor. J Comp Physiol A 158:1–7

    Google Scholar 

  • Labhart T (1988) Polarization-opponent interneurons in the insect visual system. Nature 331:435–437

    Google Scholar 

  • Labhart T (1996) How polarization-sensitive interneurons of crickets perform at low degrees of polarization. J Exp Biol 199:1467–1475

    PubMed  Google Scholar 

  • Labhart T (2000) Polarization-sensitive interneurons in the optic lobe of the desert ant Cataglyphis bicolor. Naturwissenschaften 87:133–136

    CAS  PubMed  Google Scholar 

  • Labhart T, Meyer EP (1999) Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech 47:368–379

    CAS  PubMed  Google Scholar 

  • Labhart T, Meyer EP (2002) Neural mechanisms in insect navigation: polarization compass and odometer. Curr Opin Neurobiol 12:707–714

    CAS  PubMed  Google Scholar 

  • Labhart T, Petzold J (1993) Processing of polarized light information in the visual system of crickets. In: Sensory systems of arthropods. Birkhäuser, Basel, pp 158–169

    Google Scholar 

  • Labhart T et al (1984) The physiology of the cricket’s compound eye with particular reference to the anatomically specialized dorsal rim area. J Comp Physiol A 155:289–296

    Google Scholar 

  • Labhart T et al (1992) Specialized ommatidia for polarization vision in the compound eye of cockchafers, Melolontha melolontha (Coleoptera, Scarabaeidae). Cell Tissue Res 268:419–429

    CAS  PubMed  Google Scholar 

  • Labhart T et al (2001) Spatial integration in polarization-sensitive interneurones of crickets: a survey of evidence, mechanisms and benefits. J Exp Biol 204:2423–2430

    CAS  PubMed  Google Scholar 

  • Labhart T et al (2009) Specialized ommatidia of the polarization-sensitive dorsal rim area in the eye of monarch butterflies have non-functional reflecting tapeta. Cell Tissue Res 338:391–400

    PubMed Central  PubMed  Google Scholar 

  • Lambert A et al (2011) Visual odometry aided by a sun sensor and inclinometer. In: Presented at the 2011 I.E. aerospace conference, 05–12 March 2011. IEEE Computer Society, Washington, DC, pp 1–14. doi:10.1109/AERO.2011.5747268

    Google Scholar 

  • Lin C-Y et al (2013) A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. Cell Rep 3:1739–1753

    CAS  PubMed  Google Scholar 

  • Loesel R, Homberg U (2001) Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J Comp Neurol 439:193–207

    CAS  PubMed  Google Scholar 

  • Mappes M, Homberg U (2004) Behavioral analysis of polarization vision in tethered flying locusts. J Comp Physiol A 190:61–68

    CAS  Google Scholar 

  • Mappes M, Homberg U (2007) Surgical lesion of the anterior optic tract abolishes polarotaxis in tethered flying locusts, Schistocerca gregaria. J Comp Physiol A 193:43–50

    Google Scholar 

  • Marshall NJ (1988) A unique colour and polarization vision system in mantis shrimps. Nature 333:557–560

    CAS  PubMed  Google Scholar 

  • Marshall J, Cronin TW (2011) Polarisation vision. Curr Biol 21:R101–R105

    CAS  PubMed  Google Scholar 

  • Marshall J et al (1999) Behavioural evidence for polarisation vision in stomatopods reveals a potential channel for communication. Curr Biol 9:755–758

    CAS  PubMed  Google Scholar 

  • Marshall J et al (2007) Stomatopod eye structure and function: a review. Arthropod Struct Dev 36:420–448

    PubMed  Google Scholar 

  • Merlin C et al (2012) Unraveling navigational strategies in migratory insects. Curr Opin Neurobiol 22:353–361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moody MF, Parriss JR (1961) The discrimination of polarized light by octopus: a behavioural and morphological study. Z Vgl Physiol 44:268–291

    Google Scholar 

  • Muheim R (2011) Behavioural and physiological mechanisms of polarized light sensitivity in birds. Philos Trans R Soc Lond B Biol Sci 366:763–771

    PubMed Central  PubMed  Google Scholar 

  • Müller M et al (1997) Neuroarchitecture of the lower division of the central body in the brain of the locust (Schistocerca gregaria). Cell Tissue Res 288:159–176

    PubMed  Google Scholar 

  • Nässel DR, Homberg U (2006) Neuropeptides in interneurons of the insect brain. Cell Tissue Res 326:1–24

    PubMed  Google Scholar 

  • Pfeiffer K, Homberg U (2007) Coding of azimuthal directions via time-compensated combination of celestial compass cues. Curr Biol 17:960–965

    CAS  PubMed  Google Scholar 

  • Pfeiffer K, Kinoshita M (2012) Segregation of visual inputs from different regions of the compound eye in two parallel pathways through the anterior optic tubercle of the bumblebee (Bombus ignitus). J Comp Neurol 520:212–229

    PubMed  Google Scholar 

  • Pfeiffer K et al (2005) Polarization-sensitive and light-sensitive neurons in two parallel pathways passing through the anterior optic tubercle in the locust brain. J Neurophysiol 94:3903–3915

    PubMed  Google Scholar 

  • Pfeiffer K et al (2011) Conditional perception under stimulus ambiguity: polarization- and azimuth-sensitive neurons in the locust brain are inhibited by low degrees of polarization. J Neurophysiol 105:28–35

    PubMed  Google Scholar 

  • Philipsborn A, Labhart T (1990) A behavioural study of polarization vision in the fly, Musca domestica. J Comp Physiol A 167:737–743

    Google Scholar 

  • Pignatelli V, Temple SE, Chiou T-H, Roberts NW, Collin SP, Marshall NJ (2011) Behavioural relevance of polarization sensitivity as a target detection mechanism in cephalopods and fishes. Philos Trans R Soc Lond B Biol Sci 366:734–741

    PubMed Central  PubMed  Google Scholar 

  • Reppert SM et al (2004) Polarized light helps monarch butterflies navigate. Curr Biol 14:155–158

    CAS  PubMed  Google Scholar 

  • Reppert SM et al (2010) Navigational mechanisms of migrating monarch butterflies. Trends Neurosci 33:399–406

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts NW, Needham MG (2007) A mechanism of polarized light sensitivity in cone photoreceptors of the goldfish Carassius auratus. Biophys J 93:3241–3248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts NW et al (2011) The molecular basis of mechanisms underlying polarization vision. Philos Trans R Soc Lond B Biol Sci 366:627–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosner R, Homberg U (2013) Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain. J Neurosci 33:8122–8133

    CAS  PubMed  Google Scholar 

  • Rossel S, Wehner R (1982) The bee’s map of the e-vector pattern in the sky. Proc Natl Acad Sci U S A 79:4451–4455

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossel S, Wehner R (1984) How bees analyse the polarization patterns in the sky. J Comp Physiol A 154:607–615

    Google Scholar 

  • Sakura M et al (2008) Polarized skylight navigation in insects: model and electrophysiology of e-vector coding by neurons in the central complex. J Neurophysiol 99:667–682

    PubMed  Google Scholar 

  • Sauman I et al (2005) Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron 46:457–467

    CAS  PubMed  Google Scholar 

  • Schwind R (1983) Zonation of the optical environment and zonation in the rhabdom structure within the eye of the backswimmer, Notonecta glauca. Cell Tissue Res 232:53–63

    CAS  PubMed  Google Scholar 

  • Schwind R (1984) The plunge reaction of the backswimmer Notonecta glauca. J Comp Physiol A 155:319–321

    Google Scholar 

  • Schwind R (1991) Polarization vision in water insects and insects living on a moist substrate. J Comp Physiol A 169:531–540

    Google Scholar 

  • Seelig JD, Jayaraman V (2013) Feature detection and orientation tuning in the Drosophila central complex. Nature 503(7475):262–266. doi:10.1038/nature12601

    CAS  PubMed  Google Scholar 

  • Shashar N, Milbury C, Hanlon R (2002) Polarization vision in cephalopods: neuroanatomical and behavioral features that illustrate aspects of form and function. Mar Freshw Behav Phyl 35:57–68

    Google Scholar 

  • Stalleicken J et al (2005) Do monarch butterflies use polarized skylight for migratory orientation? J Exp Biol 208:2399–2408

    PubMed  Google Scholar 

  • Stalleicken J et al (2006) Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J Comp Physiol A 192:321–331

    Google Scholar 

  • Träger U, Homberg U (2011) Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J Neurosci 31:2238–2247

    PubMed  Google Scholar 

  • Träger U et al (2008) A novel type of microglomerular synaptic complex in the polarization vision pathway of the locust brain. J Comp Neurol 506:288–300

    PubMed  Google Scholar 

  • Vitzthum H et al (2002) Neurons of the central complex of the locust Schistocerca gregaria are sensitive to polarized light. J Neurosci 22:1114–1125

    CAS  PubMed  Google Scholar 

  • Wehner R (1976) Polarized-light navigation by insects. Sci Am 235:106–115

    CAS  PubMed  Google Scholar 

  • Wehner R (1984) Astronavigation in insects. Annu Rev Entomol 29:277–298

    Google Scholar 

  • Wehner R (1989) Neurobiology of polarization vision. Trends Neurosci 12:353–359

    CAS  PubMed  Google Scholar 

  • Wehner R (2001) Polarization vision-a uniform sensory capacity? J Exp Biol 204:2589–2596

    CAS  PubMed  Google Scholar 

  • Wehner R (2003) Desert ant navigation: how miniature brains solve complex tasks. J Comp Physiol A 189:579–588

    CAS  Google Scholar 

  • Wehner R, Bernard GD (1993) Photoreceptor twist: a solution to the false-color problem. Proc Natl Acad Sci U S A 90:4132–4135

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wehner R, Labhart T (2006) Polarization vision. In: Invertebrate vision. Cambridge University Press, Cambridge, pp 291–348

    Google Scholar 

  • Wehner R, Strasser S (1985) The POL area of the honey bee’s eye: behavioural evidence. Physiol Entomol 10:337–349

    Google Scholar 

  • Wehner R et al (1975) Twisted and non-twisted rhabdoms and their significance for polarization detection in the bee. J Comp Physiol A 104:225–245

    Google Scholar 

  • Weir PT, Dickinson MH (2012) Flying Drosophila orient to sky polarization. Curr Biol 22:21–27

    CAS  PubMed  Google Scholar 

  • Wernet MF et al (2003) Homothorax switches function of Drosophila photoreceptors from color to polarized light sensors. Cell 115:267–279

    CAS  PubMed  Google Scholar 

  • Wernet MF et al (2011) Genetic dissection reveals two separate retinal substrates for polarization vision in Drosophila. Curr Biol 22:12–20

    PubMed Central  PubMed  Google Scholar 

  • Williams JLD (1975) Anatomical studies of the insect central nervous system: a ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool 176:67–86

    Google Scholar 

  • Wolf R et al (1980) Polarization sensitivity of course control in Drosophila melanogaster. J Comp Physiol A 139:177–191

    Google Scholar 

  • Young JM, Armstrong J (2010) Structure of the adult central complex in Drosophila: organization of distinct neuronal subsets. J Comp Neurol 518:1500–1524

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley Heinze .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Heinze, S. (2014). Polarization Vision. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_334-5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_334-5

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Polarization Vision
    Published:
    30 July 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_334-5

  2. Original

    Polarization Vision
    Published:
    07 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_334-4