Skip to main content

Cutaneous Mechanoreceptive Afferents: Neural Coding of Texture

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

We can identify objects by the way they feel. As we move our fingers over objects in our pocket or purse, we can easily distinguish between our keys and our phone or between two different fabrics in our dresser drawer. The tactile perception of the surface texture of objects, i.e., of their microstructure and material properties, contributes to our ability to identify them by touch. Signals in the nerve convey information that allows us to identify different textures, as well as attribute different perceptual properties (e.g., roughness or hardness) to them.

Detailed Description

Spatial and Temporal Mechanisms

When we run our fingers across a textured surface, a characteristic pattern of deformations is produced in the skin (Sripati et al. 2006), and the resulting stresses and strains are transduced by multiple populations of mechanoreceptors embedded in the skin. The spatial layout and timing of the consequent spatiotemporal patterns of afferent activation convey...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bensmaia SJ, Hollins M (2003) The vibrations of texture. Somatosens Mot Res 20(1):33–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Bensmaia S, Hollins M (2005) Pacinian representations of fine surface texture. Percept Psychophys 67(5):842–854

    Article  PubMed  Google Scholar 

  • Bensmaia SJ et al (2008) The representation of stimulus orientation in the early stages of somatosensory processing. J Neurosci 28(3):776–786

    Article  CAS  PubMed  Google Scholar 

  • Birznieks I et al (2001) Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21(20):8222–8237

    CAS  PubMed  Google Scholar 

  • Birznieks I et al (2010) Encoding of tangential torque in responses of tactile afferent fibres innervating the fingerpad of the monkey. J Physiol 588(Pt 7):1057–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Blake DT, Hsiao SS, Johnson KO (1997) Neural coding mechanisms in tactile pattern recognition: the relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. J Neurosci 17(19):7480–7489

    CAS  PubMed  Google Scholar 

  • Condon M et al (2013) Differential sensitivity to surface compliance by tactile afferents in the human finger pad. J Neurophysiol 111:1308–1317

    Article  PubMed  Google Scholar 

  • Connor CE, Johnson KO (1992) Neural coding of tactile texture: comparison of spatial and temporal mechanisms for roughness perception. J Neurosci 12(9):3414–3426

    CAS  PubMed  Google Scholar 

  • Connor CE et al (1990) Tactile roughness: neural codes that account for psychophysical magnitude estimates. J Neurosci 10(12):3823–3836

    CAS  PubMed  Google Scholar 

  • Darian-Smith I, Johnson KO, Dykes R (1973) “Cold” fiber population innervating palmar and digital skin of the monkey: responses to cooling pulses. J Neurophysiol 36(2):325–346

    CAS  PubMed  Google Scholar 

  • Darian-Smith I et al (1979) Warm fibers innervating palmar and digital skin of the monkey: responses to thermal stimuli. J Neurophysiol 42(5):1297–1315

    CAS  PubMed  Google Scholar 

  • Franzén O, Johansson R, Terenius LY (1996) Somesthesis and the neurobiology of the somatosensory cortex. In: Advances in life sciences. Birkhäuser Verlag, Basel/Boston, xx, 421 pp

    Google Scholar 

  • Harper R, Stevens SS (1964) Subjective hardness of compliant materials. Q J Exp Psychol 16(3):204–215

    Article  Google Scholar 

  • Ho HN, Jones LA (2006) Contribution of thermal cues to material discrimination and localization. Percept Psychophys 68(1):118–128

    Article  PubMed  Google Scholar 

  • Hollins M, Risner SR (2000) Evidence for the duplex theory of tactile texture perception. Percept Psychophys 62(4):695–705

    Article  CAS  PubMed  Google Scholar 

  • Hollins M et al (2000) Individual differences in perceptual space for tactile textures: evidence from multidimensional scaling. Percept Psychophys 62(8):1534–1544

    Article  CAS  PubMed  Google Scholar 

  • Johansson RS, Vallbo AB (1979) Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J Physiol 286:283–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461

    Article  CAS  PubMed  Google Scholar 

  • Johnson KO, Darian-Smith I, LaMotte C (1973) Peripheral neural determinants of temperature discrimination in man: a correlative study of responses to cooling skin. J Neurophysiol 36(2):347–370

    CAS  PubMed  Google Scholar 

  • Johnson KO et al (1979) Coding of incremental changes in skin temperature by a population of warm fibers in the monkey: correlation with intensity discrimination in man. J Neurophysiol 42(5):1332–1353

    CAS  PubMed  Google Scholar 

  • Katz D, Krueger LE (1989) The world of touch. Erlbaum, Hillsdale. xii 260 pp

    Google Scholar 

  • Knibestol M (1975) Stimulus-response functions of slowly adapting mechanoreceptors in the human glabrous skin area. J Physiol 245(1):63–80

    CAS  PubMed Central  PubMed  Google Scholar 

  • LaMotte RH (2000) Softness discrimination with a tool. J Neurophysiol 83(4):1777–1786

    CAS  PubMed  Google Scholar 

  • Mackevicius EL et al (2012) Millisecond precision spike timing shapes tactile perception. J Neurosci 32(44):15309–15317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Manfredi LR et al (2014) Natural scenes in tactile texture. J Neurophysiol. (doi:10.1152/jn.00680.2013)

    Google Scholar 

  • Pei YC et al (2010) Shape invariant coding of motion direction in somatosensory cortex. PLoS Biol 8(2):e1000305

    Article  PubMed Central  PubMed  Google Scholar 

  • Phillips JR, Johnson KO, Hsiao SS (1988) Spatial pattern representation and transformation in monkey somatosensory cortex. Proc Natl Acad Sci U S A 85(4):1317–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AM, Scott SH (1996) Subjective scaling of smooth surface friction. J Neurophysiol 75(5):1957–1962

    CAS  PubMed  Google Scholar 

  • Srinivasan MA, Lamotte RH (1995) Tactual discrimination of softness. J Neurophysiol 73(1):88–101

    CAS  PubMed  Google Scholar 

  • Sripati AP, Bensmaia SJ, Johnson KO (2006) A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J Neurophysiol 95(6):3852–3864

    Article  PubMed Central  PubMed  Google Scholar 

  • Talbot WH et al (1968) The sense of flutter-vibration: comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J Neurophysiol 31(2):301–334

    CAS  PubMed  Google Scholar 

  • Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17(4):423–429

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weber AI et al (2013) Spatial and temporal codes mediate the tactile perception of natural textures. Proc Natl Acad Sci U S A 110(42):17107–17112

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yau JM, Connor CE, Hsiao SS (2013) Representation of tactile curvature in macaque somatosensory area 2. J Neurophysiol 109(12):2999–3012

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Lieber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Lieber, J. (2014). Cutaneous Mechanoreceptive Afferents: Neural Coding of Texture. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_379-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_379-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics