Skip to main content

Generalized Linear Models for Point Process Analyses of Neural Spiking Activity

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

Point process-generalized linear model. An adaptation of the generalized linear model framework to point processes using local Bernoulli or local Poisson models to analyze the relationship between neural spiking activity and relevant covariates such as putative stimuli and spike history.

Detailed Description

Most systems neuroscience experiments entail applying a stimulus and measuring the response which is commonly the spiking activity of one or more neurons (Brown et al. 2004; Paninski 2004; Truccolo et al. 2005; see entries “Spike Train,” “Spike Train Analysis: Overview”). The typical objective of the experiment is to define how spiking activity in a given brain area changes in response to the stimulus under a range of different conditions. From a statistical standpoint, this type of experimental design requires a regression model in which the observations can be spiking activity and the regressors can be the stimulus and any other relevant covariates. The generalized...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ba D, Temeranca S, Brown EN (2014) Algorithms for the analysis of ensemble neural spiking activity using simultaneous-event multivariate point-process models. Front Comput Neurosci 8:6

    Article  PubMed Central  PubMed  Google Scholar 

  • Berman M (1983) Comment on “Likelihood analysis of point processes and its applications to seismological data” by Ogata. Bull Int Stat Inst 50:412–418

    Google Scholar 

  • Berman M, Turner T (1992) Approximating point process likelihoods with GLIM. Appl Stat 41:31–38

    Article  Google Scholar 

  • Brillinger DR (1988) The maximum likelihood approach to the identification of neuronal firing systems. Ann Biomed Eng 16:3–16

    Article  CAS  PubMed  Google Scholar 

  • Brown EN, Barbieri R, Ventura V, Kass RE, Frank LM (2002) The time-rescaling theorem and its application to neural spike data analysis. Neural Comput 14:325–346

    Article  PubMed  Google Scholar 

  • Brown EN, Barbieri R, Eden UT, Frank LM (2003) Likelihood methods for neural data analysis. In: Feng J (ed) Computational neuroscience: a comprehensive approach. CRC, London, pp 253–286

    Google Scholar 

  • Brown E, Kass R, Mitra P (2004) Multiple neural spike train data analysis: state-of-the-art and future challenges. Nature Neurosci 7:456–461

    Article  CAS  PubMed  Google Scholar 

  • Chornoboy ES, Schramm LP, Karr AF (1988) Maximum likelihood identification of neural point process systems. Biol Cybern 59:265–275

    Article  CAS  PubMed  Google Scholar 

  • Czanner G, Eden UT, Wirth S, Yanike M, Suzuki WA, Brown EN (2008) Analysis of between-trial and within-trial neural spiking dynamics. J Neurophysiol 99:2672–2693

    Article  PubMed Central  PubMed  Google Scholar 

  • Daley D, Vere-Jones D (2003) An introduction to the theory of point processes, vol I & II. Springer, New York

    Google Scholar 

  • DeGroot M, Schervish M (2012) Probability and statistics, 4th edn. Pearson, Upper Saddle River, NJ

    Google Scholar 

  • Kass RE, Kelly RC, Loh WL (2011) Assessment of synchrony in multiple neural spike trains using loglinear point process models. Ann Appl Stat 5:1262–1292

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim S, Putrino D, Ghosh S, Brown EN (2011) A Granger causality measure for point process models of ensemble neural spiking activity. PLoS Comput Biol 7:e1001110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCullagh P, Nelder A (1989) Generalized linear models. Chapman & Hall, London

    Book  Google Scholar 

  • Ogata Y (1988) Statistical models for earthquake occurrences and residual analysis for point processes. J Am Stat Assoc 83:9–27

    Article  Google Scholar 

  • Okatan M, Wilson MA, Brown EN (2005) Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Comput 17:1927–1961

    Article  PubMed  Google Scholar 

  • Paninski L (2004) Maximum likelihood estimation of cascade point-process neural encoding models. Network 15:243–262

    Article  PubMed  Google Scholar 

  • Shimazaki H, Amari S, Brown EN, Grun S (2012) State-space analysis of time-varying higher-order spike correlation for multiple neural spike train data. PLoS Comput Biol 8:e1002385

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truccolo W, Eden UT, Fellows MR, Donoghue JP, Brown EN (2005) A point process framework for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects. J Neurophysiol 93:1074–1089

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Chen, Z., Brown, E.N. (2014). Generalized Linear Models for Point Process Analyses of Neural Spiking Activity. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_393-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_393-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics