Skip to main content

Computational Models of Mammalian Respiratory CPG

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 330 Accesses

Definition

Rhythmic breathing movements in mammals are produced by a central pattern generator (CPG), consisting of specialized neuronal networks located in the brainstem that are capable of endogenously producing patterned rhythmic activity. This activity emerges from the intrinsic biophysical properties and synaptic interconnections of spatially distributed neuron populations within the pontine–medullary circuits comprising the CPG. These circuits are embedded in a larger respiratory neural control system engaging various central nervous system (CNS) and peripheral afferent inputs that regulate the neural activity patterns including the oscillation period and amplitude of the output rhythmic motor activity to adjust it to the internal and/or external environment for sensorimotor integration and physiological homeostasis of O2 and CO2in the body. Computational models of the brainstem respiratory CPG that incorporate various levels of biological and mathematical detail have been in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abdala APL, Rybak IA, Smith JC, Paton JFR (2009) Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins, and implications for respiratory rhythm generation. J Physiol 587:3539–3559

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999a) Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. J Neurophysiol 82:382–397

    PubMed  Google Scholar 

  • Butera RJ, Rinzel J, Smith JC (1999b) Models of respiratory rhythm generation in the pre-Bötzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82:398–415

    PubMed  Google Scholar 

  • Butera RJ, Rubin J, Terman D, Smith JC (2005) Oscillatory bursting mechanisms in respiratory pacemaker neurons and networks. In: Coombes S, Bressloff PC (eds) Bursting. The genesis of rhythm in the nervous system. World Scientific Press, London, pp 303–347

    Chapter  Google Scholar 

  • Ermentrout GB, Terman D (2010) Mathematical foundations of neuroscience. Springer, New York

    Book  Google Scholar 

  • Grillner S, Jessell TM (2009) Measured motion: searching for simplicity in spinal locomotor networks. Curr Opin Neurobiol 19:572–586

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jasinski PE, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2013) Sodium and calcium mechanisms of rhythmic bursting in excitatory neural networks of the pre-Bötzinger complex: a computational modeling study. Eur J Neurosci 37:212–230

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindsey B, Rybak IA, Smith JC (2012) Computational models and emergent properties of respiratory neural networks. Compr Physiol 2:1619–1670

    PubMed  PubMed Central  Google Scholar 

  • Purvis L, Smith JC, Koizumi H, Butera RJ (2007) Intrinsic bursters increase the robustness of rhythm generation in an excitatory network. J Neurophysiol 97:1515–1526

    Article  PubMed  CAS  Google Scholar 

  • Richter DW, Smith JC (2014) Respiratory rhythm generation in vivo. Physiology 29:558–571

    Article  Google Scholar 

  • Rubin JE, Shevtsova NA, Ermentrout GB, Smith JC, Rybak IA (2009) Multiple rhythmic states in a model of the respiratory CPG. J Neurophysiol 101:2146–2165

    Article  PubMed  PubMed Central  Google Scholar 

  • Rubin J, Bacaak BJ, Molkov YI, Shevtsova NA, Smith JC, Rybak IA (2011) Interacting oscillations in neural control of breathing: modeling and qualitative analysis. J Comput Neurosci 30:607–632

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybak IA, Smith JC (2009) Computational modeling of the respiratory network. In: Binder MD, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience, part 3. Springer, Berlin, pp 824–832

    Chapter  Google Scholar 

  • Rybak IA, Abdula APL, Markin SN, Paton JFR, Smith JC (2007) Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation. Prog Brain Res 165:201–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Shepard GM, Grillner S (2010) Handbook of brain microcircuits. Oxford University Press, New York

    Google Scholar 

  • Shevtsova NA et al (2011) Computational modelling of 5-HT receptor-mediated reorganization of the brainstem respiratory network. Eur J Neurosci 34:1276–1279

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JC, Abdala APL, Koizumi H, Rybak IA, Paton JFR (2007) Spatial and functional architecture of the mammalian brainstem respiratory network: a hierarchy of three oscillatory mechanisms. J Neurophysiol 98:3370–3387

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Smith JC, Abdala APL, Rybak IA, Paton JFR (2009) Structural and functional architecture of respiratory networks in the mammalian brainstem. Philos Trans R Soc Lond B Biol Sci 364:2577–2587

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith JC, Abdala APL, Borgmann A, Rybak IA, Paton JFR (2013) Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci 36:152–162

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stein PSG, Grillner S, Selverston AI, Stuart DG (1997) Neurons, networks, and motor behavior. MIT Press, Cambridge, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey C. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science Business Media New York (outside the USA)

About this entry

Cite this entry

Smith, J.C. (2014). Computational Models of Mammalian Respiratory CPG. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_41-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_41-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics