Skip to main content

Short-Term Synaptic Plasticity in Central Pattern Generators

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Synonyms

Augmentation; Depression; Enhancement; Facilitation; Post-tetanic potentiation

Definition

Short-term synaptic plasticity (STP) is a transient (milliseconds to minutes) activity-dependent change in the amplitude of the postsynaptic current in response to presynaptic activity. Central pattern generators (CPGs) are neural networks in the central nervous system capable of producing coordinated rhythmic output without rhythmic input from sensory organs or from higher control centers.

Detailed Description

Short-term synaptic plasticity (STP) is a transient (milliseconds to minutes) activity-dependent change in the amplitude (strength) of the postsynaptic current in response to presynaptic activity. It has clear implications for neural signaling and has been studied for several decades. Much of the modeling work has focused on the events in the presynaptic terminal and primarily on the role of Ca2+ in synaptic release of neurotransmitters (Zucker & Regehr 2002; Fioravante and Regehr 2011...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arshavsky YuI, Orlovsky GN, Panchin YuV, Roberts A, Soffe SR (1993) Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci 16:227–233

    Google Scholar 

  • Atluri PP, Regehr WG (1996) Determinants of the time course of facilitation at the granule cell to Purkinje cell synapse. J Neurosci 16:5661–5671

    CAS  PubMed  Google Scholar 

  • Ayers J (2004) Underwater walking. Arthropod Struct Dev 33:347–360

    Article  PubMed  Google Scholar 

  • Bertram R, Smith GD, Sherman A (1999) Modeling study of the effects of overlapping Ca2+ microdomains on neurotransmitter release. Biophys J 76:735–750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bertram R, Swanson J, Yousef M, Feng ZP, Zamponi GW (2003) A minimal model for G protein-mediated synaptic facilitation and depression. J Neurophysiol 90:1643–1653

    Article  CAS  PubMed  Google Scholar 

  • Bornschein G, Arendt O, Hallermann S, Brachtendorf S, Eilers J, Schmidt H (2013) Paired-pulse facilitation at recurrent Purkinje neuron synapses is independent of calbindin and parvalbumin during high-frequency activation. J Physiol 591:3355–3370

    CAS  PubMed  Google Scholar 

  • Brostoff JM, Birns J, McCrea D (2008) Phenytoin toxicity: an easily missed cause of cerebellar syndrome. J Clin Pharm Ther 33:211–214

    Article  CAS  PubMed  Google Scholar 

  • Burnashev N, Rozov A (2005) Presynaptic Ca2+ dynamics, Ca2+ buffers and synaptic efficacy. Cell Calcium 37:489–495

    Article  CAS  PubMed  Google Scholar 

  • Burrone J, Neves G, Gomis A, Cooke A, Lagnado L (2002) Endogenous calcium buffers regulate fast exocytosis in the synaptic terminal of retinal bipolar cells. Neuron 33:101–112

    Article  CAS  PubMed  Google Scholar 

  • Butera RJ Jr, Rinzel J, Smith JC (1999) Models of respiratory rhythm generation in the pre-Botzinger complex. II. Populations of coupled pacemaker neurons. J Neurophysiol 82:398–415

    PubMed  Google Scholar 

  • Calakos N, Schoch S, Sudhof TC, Malenka RC (2004) Multiple roles for the active zone protein RIM1alpha in late stages of neurotransmitter release. Neuron 42:889–896

    Article  CAS  PubMed  Google Scholar 

  • Cordovez JM, Wilson CG, Solomon IC (2010) Geometrical analysis of bursting pacemaker neurons generated by computational models: comparison to in vitro pre-Botzinger complex bursting neurons. Adv Exp Med Biol 669:45–48

    Article  PubMed  Google Scholar 

  • Del Negro CA, Koshiya N, Butera RJ Jr, Smith JC (2002a) Persistent sodium current, membrane properties and bursting behavior of pre-botzinger complex inspiratory neurons in vitro. J Neurophysiol 88:2242–2250

    Article  PubMed  Google Scholar 

  • Del Negro CA, Morgado-Valle C, Feldman JL (2002b) Respiratory rhythm: an emergent network property? Neuron 34:821–830

    Article  PubMed  Google Scholar 

  • Deng PY, Klyachko VA (2011) The diverse functions of short-term plasticity components in synaptic computations. Commun Integr Biol 4:543–548

    PubMed Central  PubMed  Google Scholar 

  • Felmy F, Neher E, Schneggenburger R (2003) Probing the intracellular calcium sensitivity of transmitter release during synaptic facilitation. Neuron 37:801–811

    Article  CAS  PubMed  Google Scholar 

  • Fioravante D, Regehr WG (2011) Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foster KA, Kreitzer AC, Regehr WG (2002) Interaction of postsynaptic receptor saturation with presynaptic mechanisms produces a reliable synapse. Neuron 36:1115–1126

    Article  CAS  PubMed  Google Scholar 

  • Friesen WO, Kristan WB (2007) Leech locomotion: swimming, crawling, and decisions. Curr Opin Neurobiol 17:704–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goldin-Meadow S, Nusbaum H, Kelly SD, Wagner S (2001) Explaining math: gesturing lightens the load. Psychol Sci 12:516–522

    Article  CAS  PubMed  Google Scholar 

  • Grillner S (2003) The motor infrastructure: from ion channels to neuronal networks. Nat Rev Neurosci 4:573–586

    Article  CAS  PubMed  Google Scholar 

  • Hallermann S, Fejtova A, Schmidt H, Weyhersmuller A, Silver RA, Gundelfinger ED, Eilers J (2010) Bassoon speeds vesicle reloading at a central excitatory synapse. Neuron 68:710–723

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hennig MH (2013) Theoretical models of synaptic short term plasticity. Front Comput Neurosci 7:45

    Article  PubMed Central  PubMed  Google Scholar 

  • Ijspeert AJ, Crespi A, Ryczko D, Cabelguen JM (2007) From swimming to walking with a salamander robot driven by a spinal cord model. Science 315:1416–1420

    Article  CAS  PubMed  Google Scholar 

  • Isope P (2013) Short-term synaptic plasticity and the ‘active calcium’ hypothesis at a central synapse. J Physiol 591.19:4681–4682

    Article  CAS  PubMed  Google Scholar 

  • Jahn R, Fasshauer D (2012) Molecular machines governing exocytosis of synaptic vesicles. Nature 490:201–207

    Article  CAS  PubMed  Google Scholar 

  • Kaeser PS (2011) Pushing synaptic vesicles over the RIM. Cell Logist 1:106–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaeser PS, Deng L, Wang Y, Dulubova I, Liu X, Rizo J, Sudhof TC (2011) RIM proteins tether Ca2+ channels to presynaptic active zones via a direct PDZ-domain interaction. Cell 144:282–295

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kahn JA, Roberts A (1982) The neuromuscular basis of rhythmic struggling movements in embryos of Xenopus laevis. J Exp Biol 99:197–205

    CAS  PubMed  Google Scholar 

  • Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195:481–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kozlov A, Kotaleski JH, Aurell E, Grillner S, Lansner A (2001) Modeling of substance P and 5-HT induced synaptic plasticity in the lamprey spinal CPG: consequences for network pattern generation. J Comput Neurosci 11:183–200

    Article  CAS  PubMed  Google Scholar 

  • Li WC, Sautois B, Roberts A, Soffe SR (2007) Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity. J Neurosci 27:12267–12276

    Article  CAS  PubMed  Google Scholar 

  • MacKay-Lyons M (2002) Central pattern generation of locomotion: a review of the evidence. Phys Ther 82:69–83

    PubMed  Google Scholar 

  • Mamiya A, Manor Y, Nadim F (2003) Short-term dynamics of a mixed chemical and electrical synapse in a rhythmic network. J Neurosci 23:9557–9564

    CAS  PubMed  Google Scholar 

  • Manor Y, Bose A, Booth V, Nadim F (2003) Contribution of synaptic depression to phase maintenance in a model rhythmic network. J Neurophysiol 90:3513–3528

    Article  PubMed  Google Scholar 

  • Marder E, Calabrese RL (1996) Principles of rhythmic motor pattern generation. Physiol Rev 76:687–717

    CAS  PubMed  Google Scholar 

  • Marder E, Bucher D, Schulz DJ, Taylor AL (2005) Invertebrate central pattern generation moves along. Curr Biol 15:R685–R699

    Article  CAS  PubMed  Google Scholar 

  • Markram H, Gupta A, Uziel A, Wang Y, Tsodyks M (1998) Information processing with frequency-dependent synaptic connections. Neurobiol Learn Memory 70:101–112

    Article  CAS  Google Scholar 

  • Matveev V, Sherman A, Zucker RS (2002) New and corrected simulations of synaptic facilitation. Biophys J 83:1368–1373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matveev V, Zucker RS, Sherman A (2004) Facilitation through buffer saturation: constraints on endogenous buffering properties. Biophys J 86:2691–2709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matveev V, Bertram R, Sherman A (2006) Residual bound Ca2+ can account for the effects of Ca2+ buffers on synaptic facilitation. J Neurophysiol 96:3389–3397

    Article  PubMed  Google Scholar 

  • Mehta PP, Battenberg E, Wilson MC (1996) SNAP-25 and synaptotagmin involvement in the final Ca(2+)-dependent triggering of neurotransmitter exocytosis. Proc Natl Acad Sci USA 93:10471–10476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nadim F, Olsen OH, De Schutter E, Calabrese RL (1995) Modeling the leech heartbeat elemental oscillator. I. Interactions of intrinsic and synaptic currents. J Comput Neurosci 2:215–235

    Article  CAS  PubMed  Google Scholar 

  • Neher E (1998) Vesicle pools and Ca2+ microdomains: new tools for understanding their roles in neurotransmitter release. Neuron 20:389–399

    Article  CAS  PubMed  Google Scholar 

  • Oh M, Zhao S, Matveev V, Nadim F (2012) Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. J Comput Neurosci 33:573–585

    Article  PubMed  Google Scholar 

  • Pan B, Zucker RS (2009) A general model of synaptic transmission and short-term plasticity. Neuron 62:539–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parker D, Grillner S (1999) Long-lasting substance-P-mediated modulation of NMDA-induced rhythmic activity in the lamprey locomotor network involves separate RNA- and protein-synthesis-dependent stages. Eur J Neurosci 11:1515–1522

    Article  CAS  PubMed  Google Scholar 

  • Pena F, Parkis MA, Tryba AK, Ramirez JM (2004) Differential contribution of pacemaker properties to the generation of respiratory rhythms during normoxia and hypoxia. Neuron 43:105–117

    Article  CAS  PubMed  Google Scholar 

  • Regehr WG (2012) Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 4:a005702

    Article  PubMed  Google Scholar 

  • Rosenmund C, Stevens CF (1996) Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Rubin JE, Hayes JA, Mendenhall JL, Del Negro CA (2009) Calcium-activated nonspecific cation current and synaptic depression promote network-dependent burst oscillations. Proc Natl Acad Sci USA 106:2939–2944

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz R, Cano R, Casanas JJ, Gaffield MA, Betz WJ, Tabares L (2011) Active zones and the readily releasable pool of synaptic vesicles at the neuromuscular junction of the mouse. J Neurosci 31:2000–2008

    Article  CAS  PubMed  Google Scholar 

  • Schaffhausen JH, Fischer TM, Carew TJ (2001) Contribution of postsynaptic Ca2+ to the induction of post-tetanic potentiation in the neural circuit for siphon withdrawal in Aplysia. J Neurosci 21:1739–1749

    CAS  PubMed  Google Scholar 

  • Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212

    Article  CAS  PubMed  Google Scholar 

  • Scott R, Rusakov DA (2006) Main determinants of presynaptic Ca2+ dynamics at individual mossy fiber-CA3 pyramidal cell synapses. J Neurosci 26:7071–7081

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sherwood WE, Harris-Warrick R, Guckenheimer J (2011) Synaptic patterning of left-right alternation in a computational model of the rodent hindlimb central pattern generator. J Comput Neurosci 30:323–360

    Article  PubMed  Google Scholar 

  • Simon SM, Llinas RR (1985) Compartmentalization of the submembrane calcium activity during calcium influx and its significance in transmitter release. Biophys J 48:485–498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skinner FK, Kopell N, Marder E (1994) Mechanisms for oscillation and frequency control in reciprocally inhibitory model neural networks. J Comput Neurosci 1:69–87

    Article  CAS  PubMed  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254:726–729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley (1997) The calcium channel and the organization of the presynaptic release face. Trends Neurosci 20:404-409

    Google Scholar 

  • Stein W, Smarandache CR, Nickmann M, Hedrich UB (2006) Functional consequences of activity-dependent synaptic enhancement at a crustacean neuromuscular junction. J Exp Biol 209:1285–1300

    Article  PubMed  Google Scholar 

  • Sudhof TC (2012) The presynaptic active zone. Neuron 75:11–25

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tabak J, Murphey CR, Moore LE (2000) Parameter estimation methods for single neuron models. J Comput Neurosci 9:215–236

    Article  CAS  PubMed  Google Scholar 

  • Tabak J, Rinzel J, O'Donovan MJ (2001) The role of activity-dependent network depression in the expression and self-regulation of spontaneous activity in the developing spinal cord. J Neurosci Off J Soc Neurosci 21:8966–8978

    CAS  Google Scholar 

  • Taruno A, Ohmori H, Kuba H (2012) Inhibition of presynaptic Na(+)/K(+)-ATPase reduces readily releasable pool size at the avian end-bulb of Held synapse. Neurosci Res 72:117–128

    Article  CAS  PubMed  Google Scholar 

  • Trigo FF, Sakaba T, Ogden D, Marty A (2012) Readily releasable pool of synaptic vesicles measured at single synaptic contacts. Proc Natl Acad Sci USA 109:18138–18143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vavoulis DV, Straub VA, Kemenes I, Kemenes G, Feng J, Benjamin PR (2007) Dynamic control of a central pattern generator circuit: a computational model of the snail feeding network. Eur J Neurosci 25:2805–2818

    Article  PubMed  Google Scholar 

  • Wadiche JI, Jahr CE (2001) Multivesicular release at climbing fiber-Purkinje cell synapses. Neuron 32:301–313

    Article  CAS  PubMed  Google Scholar 

  • Wang XJ, Rinzel J (1992) Alternating and synchronous rhythms in reciprocally inhibitory model neurons. Neural Comput 4:84–97

    Article  Google Scholar 

  • Xu J, Wu LG (2005) The decrease in the presynaptic calcium current is a major cause of short-term depression at a calyx-type synapse. Neuron 46:633–645

    Article  CAS  PubMed  Google Scholar 

  • Xu-Friedman MA, Regehr WG (2004) Structural contributions to short-term synaptic plasticity. Physiol Rev 84:69–85

    Article  CAS  PubMed  Google Scholar 

  • Xu-Friedman MA, Harris KM, Regehr WG (2001) Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J Neurosci 21:6666–6672

    CAS  PubMed  Google Scholar 

  • Zhao S, Sheibanie AF, Oh M, Rabbah P, Nadim F (2011) Peptide neuromodulation of synaptic dynamics in an oscillatory network. J Neurosci 31:13991–14004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zilly FE, Sorensen JB, Jahn R, Lang T (2006) Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 4:e330

    Article  PubMed Central  PubMed  Google Scholar 

  • Zucker RS, Fogelson AL (1986) Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proc Natl Acad Sci USA 83:3032–3036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zucker RS, Regehr WG (2002) Short-Term Synaptic Plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by NIH grant MH060605.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Martinez, D., Matveev, V., Nadim, F. (2014). Short-Term Synaptic Plasticity in Central Pattern Generators. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_467-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_467-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics