Skip to main content

Multi-scale Modeling of Purkinje Cells

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience

Definition

The Purkinje cell is one of the most extensively modeled neurons in computational neuroscience. Purkinje cells have large dendritic trees that contain more than 150,000 dendritic spines. While dendritic spines are femto-liter cytosolic volumes with lengths of less than 2 μm, the dendritic tree can have a total length of hundreds of microns and thousands of femto-liters in volume. Thus, biochemical and electrical interactions take place over three orders of magnitude in space. Similarly, the time constant of activation of the different dendritic and somatic active conductances ranges from sub-milliseconds to almost 1 s (four orders of magnitude). Therefore, a comprehensive computational study of the Purkinje cell has to be done using multi-scale models and modeling techniques.

Detailed Description

Models of Purkinje cells range from perceptrons to detailed biochemical models of single synapses to biophysical models that take into account the intricate dendritic structure.

Pass...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • De Schutter E, Bower JM (1994a) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401–419

    PubMed  Google Scholar 

  • De Schutter E, Bower JM (1994b) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375–400

    PubMed  Google Scholar 

  • De Schutter E, Bower JM (1994c) Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci U S A 91:4736–4740

    Article  PubMed Central  PubMed  Google Scholar 

  • Kuroda S, Schweighofer N, Kawato M (2001) Exploration of signal transduction pathways in cerebellar long-term depression by kinetic simulation. J Neurosci 21:5693–5702

    CAS  PubMed  Google Scholar 

  • Pellionisz A, Llinás R (1977) A computer model of cerebellar purkinje cells. Neuroscience 2:37–48

    Article  CAS  PubMed  Google Scholar 

Further Reading

  • Antunes G, De Schutter E (2012) A stochastic signaling network mediates the probabilistic induction of cerebellar long-term depression. J Neurosci 32:9288–9300

    Article  CAS  PubMed  Google Scholar 

  • Brown SA, Morgan F, Watras J, Loew LM (2008) Analysis of phosphatidylinositol-4,5-bisphosphate signaling in cerebellar Purkinje spines. Biophys J 95:1795–1812

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brunel N, Hakim V, Isope P, Nadal JP, Barbour B (2004) Optimal information storage and the distribution of synaptic weights: perceptron versus Purkinje cell. Neuron 43:745–757

    CAS  PubMed  Google Scholar 

  • Clopath C, Nadal JP, Brunel N (2012) Storage of correlated patterns in standard and bistable Purkinje cell models. PLoS Comput Biol 8:e1002448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doi T, Kuroda S, Michikawa T, Kawato M (2005) Inositol 1,4,5-trisphosphate-dependent Ca2+ threshold dynamics detect spike timing in cerebellar Purkinje cells. J Neurosci 25:950–961

    Article  CAS  PubMed  Google Scholar 

  • Fernandez FR, Engbers JD, Turner RW (2007) Firing dynamics of cerebellar purkinje cells. J Neurophysiol 98:278–294

    Article  PubMed  Google Scholar 

  • Khaliq ZM, Gouwens NW, Raman IM (2003) The contribution of resurgent sodium current to high-frequency firing in Purkinje neurons: an experimental and modeling study. J Neurosci 23:4899–4912

    CAS  PubMed  Google Scholar 

  • Lee C-C, Anton M, Poon C-S, McRae G (2009) A kinetic model unifying presynaptic short-term facilitation and depression. J Comput Neurosci 26:459–473

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyasho T, Takagi H, Suzuki H, Watanabe S, Inoue M, Kudo Y, Miyakawa H (2001) Low-threshold potassium channels and a low-threshold calcium channel regulate Ca2+ spike firing in the dendrites of cerebellar Purkinje neurons: a modeling study. Brain Res 891:106–115

    Article  CAS  PubMed  Google Scholar 

  • Rapp M, Segev I, Yarom Y (1994) Physiology, morphology and detailed passive models of guinea-pig cerebellar Purkinje cells. J Physiol 474:101–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santamaria F, Jaeger D, De Schutter E, Bower JM (2002) Modulatory effects of parallel fiber and molecular layer interneuron synaptic activity on purkinje cell responses to ascending segment input: a modeling study. J Comput Neurosci 13:217–235

    Article  CAS  PubMed  Google Scholar 

  • Santamaria F, Tripp PG, Bower JM (2007) Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 97:248–263

    Article  PubMed  Google Scholar 

  • Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121–136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Traub RD, Middleton SJ, Knöpfel T, Whittington MA (2008) Model of very fast (>75 Hz) network oscillations generated by electrical coupling between the proximal axons of cerebellar Purkinje cells. Eur J Neurosci 28:1603–1616

    Article  PubMed Central  PubMed  Google Scholar 

  • Vetter P, Roth A, Hausser M (2001) Propagation of action potentials in dendrites depends on dendritic morphology. J Neurophysiol 85:926–937

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidel Santamaria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Santamaria, F., Michaelides, E.A. (2014). Multi-scale Modeling of Purkinje Cells. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_473-2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_473-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics