Skip to main content

Lateral Geniculate Nucleus (LGN) Models

Encyclopedia of Computational Neuroscience
  • 287 Accesses

Definition

LGN models refer to mathematical models for the activity of neurons (relay cells and interneurons) in the lateral geniculate nucleus (LGN) of the thalamus. The LGN is positioned between the retina and the primary visual cortex in the early visual pathway in mammals.

Detailed Description

Overview of LGN Circuit

The lateral geniculate nucleus (LGN) acts as a gateway for visual signals to reach cortex. It receives driving input from retinal ganglion cells (RGCs) and modulatory input from the cortex, the thalamic reticular nucleus (TRN), and the brainstem (Sherman and Guillery 2001). The principal cells in the LGN, the thalamocortical relay cells (RCs), transmit visual information to cortex. In cat, they constitute about 75–80 % of the cells in the nucleus, while the remaining 20–25 % are intrageniculate interneurons (INs). The RCs receive synaptic inputs from a variety of sources: direct feedforward excitation from RGCs; indirect feedforward inhibitionvia the INs, which in...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Allen EA, Freeman RD (2006) Dynamic spatial processing originates in early visual pathways. J Neurosci 26:11763–11774

    Article  PubMed  CAS  Google Scholar 

  • Babadi B (2005) Bursting as an effective relay mode in a minimal thalamic model. J Comput Neurosci 18:229–243

    Article  PubMed  Google Scholar 

  • Babadi B, Casti A, Xiao Y, Kaplan E, Paninski L (2010) A generalized linear model of the impact of direct and indirect inputs to the lateral geniculate nucleus. J Vis 10:22

    Article  PubMed Central  PubMed  Google Scholar 

  • Behuret S, Deleuze C, Gomez L, Fregnac Y, Bal T (2013) Cortically-controlled population stochastic facilitation as a plausible substrate for guiding sensory transfer across the thalamic gateway. PLoS Comput Biol 9:e1003401

    Article  PubMed Central  PubMed  Google Scholar 

  • Bloomfield SA, Sherman SM (1989) Dendritic current flow in relay cells and interneurons of the cat’s lateral geniculate nucleus. Proc Natl Acad Sci U S A 10:3911–3914

    Article  Google Scholar 

  • Briska AM, Uhlrich DJ, Lytton WW (2003) Computer model of passive signal integration based on whole-cell in vitro studies of rat lateral geniculate nucleus. Eur J Neurosci 17(8):1531–1541

    Article  PubMed  Google Scholar 

  • Broicher T, Kanyshkova T, Landgraf P, Rankovic V, Meuth P, Meuth SG, Pape H-C, Budde T (2007) Specific expression of low-voltage-activated calcium channel isoforms and splice variants in thalamic local circuit interneurons. Mol Cell Neurosci 36(2):132–145

    Article  PubMed  CAS  Google Scholar 

  • Cai D, Deangelis GC, Freeman RD (1997) Spatiotemporal receptive field organization in the lateral geniculate nucleus of cats and kittens. J Neurophysiol 78:1045–1061

    PubMed  CAS  Google Scholar 

  • Carandini M, Horton JC, Sincich LC (2007) Thalamic filtering of retinal spike trains by postsynaptic summation. J Vis 7:20

    Article  PubMed Central  PubMed  Google Scholar 

  • Casale AE, McCormick DA (2011) Active action potential propagation but not initiation in thalamic interneuron dendrites. J Neurosci 31(50):18289–18302

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Casti ARR, Omurtag A, Sornborger A, Kaplan E, Knight B, Victor J, Sirovich L (2002) A population study of integrate-and-fire-or-burst neurons. Neural Comput 14:957–986

    Article  PubMed  CAS  Google Scholar 

  • Dawis S, Shapley R, Kaplan E, Tranchina D (1984) The receptive field organization of X-cells in the cat: spatiotemporal coupling and asymmetry. Vision Res 24:549–564

    Article  PubMed  CAS  Google Scholar 

  • Dayan P, Abbott LF (2001) Theoretical neuroscience. The MIT Press, Cambridge, MA

    Google Scholar 

  • Destexhe A, Sejnowski TJ (2001) Thalamocortical assemblies. Oxford University Press, New York

    Google Scholar 

  • Destexhe A, Babloyantz A, Sejnowski TJ (1993) Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys J 65(4):1538–1552

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Destexhe A, Neubig M, Ulrich D, Huguenard J (1998) Dendritic low-threshold calcium currents in thalamic relay cells. J Neurosci 18(10):3574–3588

    PubMed  CAS  Google Scholar 

  • Dong D (1995) Temporal decorrelation: a theory of lagged and nonlagged responses in the lateral geniculate nucleus. Network Comput Neural Syst 6:159–178

    Article  Google Scholar 

  • Einevoll GT, Heggelund P (2000) Mathematical models for the spatial receptive-field organization of nonlagged X-cells in dorsal lateral geniculate nucleus of cat. Vis Neurosci 17(6):871–885

    Article  PubMed  CAS  Google Scholar 

  • Einevoll GT, Plesser HE (2002) Linear mechanistic models for the dorsal lateral geniculate nucleus of cat probed using drifting grating stimuli. Network Comp Neural 13:503–530

    Article  CAS  Google Scholar 

  • Einevoll GT, Plesser HE (2012) Extended difference-of-Gaussians model incorporating cortical feedback for relay cells in the lateral geniculate nucleus of cat. Cogn Neurodynam 6:307–324

    Article  Google Scholar 

  • Einevoll GT, Jurkus P, Heggelund P (2011) Coarse-to-fine changes of receptive fields in lateral geniculate nucleus have a transient and a sustained component that depend on distinct mechanisms. PLoS One 6(9):e24523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Emri Z, Antal K, Toth TI, Cope DW, Crunelli V (2000) Backpropagation of the delta oscillation and the retinal excitatory postsynaptic potential in a multi-compartment model of thalamocortical neurons. Neuroscience 78:111–127

    Article  Google Scholar 

  • Emri Z, Antal K, Crunelli V (2003) The impact of corticothalamic feedback on the output dynamics of a thalamocortical neurone model: the role of synapse location and metabotropic glutamate receptors. Neuroscience 117(1):229–239

    Article  PubMed  CAS  Google Scholar 

  • Gazéres N, Borg-Graham LJ, Frégnac Y (1998) A phenomenological model of visually evoked spike trains in cat geniculate nonlagged x-cells. Vis Neurosci 15:1157–1174

    Article  PubMed  Google Scholar 

  • Gerstner W, Kistler WM (2002) Spiking neuron models. Cambridge University Press, New York

    Book  Google Scholar 

  • Halnes G, Augustinaite S, Heggelund P, Einevoll GT, Migliore M (2011) A multi-compartment model for interneurons in the dorsal lateral geniculate nucleus. PLoS Comput Biol 7(9):e1002160

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayot F, Tranchina D (2001) Modeling corticofugal feedback and the sensitivity of lateral geniculate neurons to orientation discontinuity. Vis Neurosci 18:865–877

    PubMed  CAS  Google Scholar 

  • Heiberg T, Kriener B, Tetzlaff T, Casti A, Einevoll GT, Plesser HE (2013) Firing-rate models capture essential response dynamics of lgn relay cells. J Comput Neurosci 35:359–375

    Article  PubMed  Google Scholar 

  • Huertas MA, Smith GD (2006) A multivariate population density model of the dLGN/PGN relay. J Comput Neurosci 21:171–189

    Article  PubMed  Google Scholar 

  • Huertas MA, Groff JR, Smith GD (2005) Feedback inhibition and throughput properties of an integrate-and-fire-or-burst network model of retinogeniculate transmission. J Comput Neurosci 19:147–180

    Article  PubMed  Google Scholar 

  • Huguenard JR, McCormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68(4):1373–1383

    PubMed  CAS  Google Scholar 

  • Kaplan E, Marcus S, So YT (1979) Effects of dark adaptation on spatial and temporal properties of receptive fields in cat lateral geniculate nucleus. J Physiol 294:561–580

    PubMed Central  PubMed  CAS  Google Scholar 

  • Karoly A, Zsuzsa E, Toth TI, Vincenzo C (1996) Model of a thalamocortical neurone with dendritic voltage-gated ion channels. Neuroreport 7:2655–2658

    Article  Google Scholar 

  • Kirkland KL, Gerstein GL (1998) A model of cortically induced synchronization in the lateral geniculate nucleus of the cat: a role for low-threshold calcium channels. Vision Res 38:2007–2022

    Article  PubMed  CAS  Google Scholar 

  • Köhn J, Wörgötter F (1996) Corticofugal feedback can reduce the visual latency of responses to antagonistic stimuli. Biol Cybern 75(3):199–209

    Article  PubMed  Google Scholar 

  • Kosmidis E (2002) Feed-forward inhibition in the visual thalamus. Neurocomputing 44–46(1–4):479–487

    Article  Google Scholar 

  • McCormick DA, Huguenard JR (1992) A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol 68(4):1384–1400

    PubMed  CAS  Google Scholar 

  • Meuth P, Meuth SG, Jacobi D, Broicher T, Pape H-C, Budde T (2005) Get the rhythm: modeling neuronal activity. J Undergrad Neurosci Educ 4:A1–A11

    PubMed Central  PubMed  Google Scholar 

  • Nirody JA (2013) Development of spatial coarse-to-fine processing in the visual pathway. J Comput Neurosci. doi:10.1007/s10827-013-0480-6

    Google Scholar 

  • Norheim ES, Wyller J, Nordlie E, Einevoll GT (2012) A minimal mechanistic model for temporal signal processing in the lateral geniculate nucleus. Cogn Neurodynam 6:259–281

    Article  Google Scholar 

  • Perreault M-C, Raastad M (2006) Contribution of morphology and membrane resistance to integration of fast synaptic signals in two thalamic cell types. J Physiol 577(Pt 1):205–220

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rhodes PA, Llinas R (2005) A model of thalamocortical relay cells. J Physiol 565(Pt 3):765–781

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rodieck RW (1965) Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res 5:583–601

    Article  PubMed  CAS  Google Scholar 

  • Rogala J, Waleszczyk WJ, Leski S, Wrobel A, Wojcik DK (2013) Reciprocal inhibition and slow calcium decay in perigeniculate interneurons explain changes of spontaneous firing of thalamic cells caused by cortical inactivation. J Comput Neurosci 34:461–476

    Article  PubMed Central  PubMed  Google Scholar 

  • Rose RM, Hindmarsh JL (1985) A model of a thalamic neuron. Proc R Soc Lond. Series B, Containing papers of a Biological character. R Soc (Great Britain) 225(1239):161–193

    Google Scholar 

  • Rose RM, Hindmarsh JL (1989a) The assembly of ionic currents in a thalamic neuron. I. The seven-dimensional model. Proc R Soc B Lond 237:313–334

    Article  CAS  Google Scholar 

  • Rose RM, Hindmarsh JL (1989b) The assembly of ionic currents in a thalamic neuron. I. The three-dimensional model. Proc R Soc B Lond 237:267–288

    Article  CAS  Google Scholar 

  • Rose RM, Hindmarsh JL (1989c) The assembly of ionic currents in a thalamic neuron. II. The stability and state diagrams. Proc R Soc B Lond 237:289–312

    Article  CAS  Google Scholar 

  • Sherman SM, Guillery RW (2001) Exploring the thalamus. Academic, New York

    Google Scholar 

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2000) Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J Neurophysiol 83:588–610

    PubMed  CAS  Google Scholar 

  • Tibor TI, Crunelli V (1992) Computer simulations of the pacemaker oscillations of thalamocortical cells. Neuroreport 3:65–68

    Article  Google Scholar 

  • Wielaard J, Sajda P (2007) Dependence of response properties on sparse connectivity in a spiking neuron model of the lateral geniculate nucleus. J Neurophysiol 98(6):3292–3308

    Article  PubMed  Google Scholar 

  • Worgotter F, Suder K, Zhao Y, Kerscher N, Eysel UT, Funke K (1998) State-dependent receptive-field restructuring in the visual cortex. Nature 396(6707):165–168

    Article  PubMed  CAS  Google Scholar 

  • Yousif N, Denham M (2007) The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: a computational modelling study. Biol Cybern 97(4):269–277

    Article  PubMed  Google Scholar 

  • Zhu JJ, Uhlrich DJ, Lytton WW (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91(4):1445–1460

    Article  PubMed  CAS  Google Scholar 

  • Zomorrodi R, Kroger H, Timofeev I (2008) Modeling thalamocortical cell: impact of ca channel distribution and cell geometry on firing pattern. Front Comput Neurosci 2:5

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaute T. Einevoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Einevoll, G.T., Halnes, G. (2014). Lateral Geniculate Nucleus (LGN) Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_556-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_556-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Lateral Geniculate Nucleus (LGN) Models
    Published:
    13 October 2018

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_556-2

  2. Original

    Lateral Geniculate Nucleus (LGN) Models
    Published:
    01 April 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_556-1