Skip to main content

Balanced State

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 274 Accesses

Synonyms

High-conductance state

Definition

The balanced state of neurons is characterized by a high value of the total membrane conductance caused by synaptic inputs. It is the state of cortical neurons in vivo in awake animals, and it is due to massive excitatory and inhibitory inputs that almost cancel out. In this state, the responses are driven by fluctuations (possible also due to coincident events) in the input, and due to a greatly reduced effective membrane time constant, the neuron responds rapidly.

Detailed Description

The notion of high-conductance states, and the fact that neurons could integrate differently in such states, was first proposed by modeling studies. A meanwhile classical dichotomy distinguished between two operating modes of neurons: the integrator mode and the coincidence detection mode. In the integrator mode, the postsynaptic neuron is emitting spikes, because it integrates over time the excitatory presynaptic inputs. In the coincidence detection mode, it...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barrett JN (1975) Motoneuron dendrites: role in synaptic integration. Fed Proc 34:1398–1407

    CAS  PubMed  Google Scholar 

  • Blumenfeld B, Bibitchkov D, Tsodyks M (2006) Neural network model of the primary visual cortex: from functional architecture to lateral connectivity and back. J Comp Neurosci 20(2):214–241

    Article  Google Scholar 

  • Chance FS, Abbott LF, Reyes AD (2002) Gain modulation from background synaptic input. Neuron 35:773–782

    Article  CAS  PubMed  Google Scholar 

  • Dichter MA, Ayala GF (1987) Cellular mechanisms of epilepsy: a status report. Science 237:157–164

    Article  CAS  PubMed  Google Scholar 

  • Kenet T, Bibitchkov D, Tsodyks M, Grinvald A, Arieli A (2003) Spontaneously emerging cortical representations of visual attributes. Nature 425(6961):954–956

    Article  CAS  PubMed  Google Scholar 

  • London M, Häusser M (2005) Dendritic computation. Ann Rev Neurosci 28:503–532

    Article  CAS  PubMed  Google Scholar 

  • Magee JC (2000) Dendritic integration of excitatory synaptic input. Nat Rev Neurosci 1(3):181–190

    Article  CAS  PubMed  Google Scholar 

  • Mariño J, Schummers J, Lyon DC, Schwabe L, Beck O, Wiesing P, Obermayer K, Sur M (2005) Invariant computations in local cortical networks with balanced excitation and inhibition. Nat Neurosci 8(2):194–201

    Article  PubMed  Google Scholar 

  • Okun M, Lampl I (2008) Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities. Nat Neurosci 11:535–537

    Article  CAS  PubMed  Google Scholar 

  • Rall W (1964) Theoretical significance of dendritic trees for neuronal input-output relations. In: Reiss R, Alto P (eds) Neural theory and modeling. Stanford University Press, Stanford

    Google Scholar 

  • Rudolph M, Destexhe A (2003) A fast-conducting, stochastic integrative mode for neocortical neurons in vivo. J Neurosci 23:2466–2476

    CAS  PubMed  Google Scholar 

  • Salinas E, Sejnowski TJ (2000) Impact of correlated synaptic input on output firing rate and variability in simple neuronal models. J Neurosci 20:6193–6209

    CAS  PubMed  Google Scholar 

  • Shadlen MN, Newsome WT (1994) Noise, neural codes and cortical organization. Curr Opin Neurobiol 4:569–579

    Article  CAS  PubMed  Google Scholar 

  • Sharp AA, Abbott LF, Marder E (1992) Artificial electrical synapses in oscillatory networks. J Neurophysiol 67:1691–1694

    CAS  PubMed  Google Scholar 

  • Sillito AM (1975) The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. J Physiol 250:305–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuckwell HC (1988) Introduction to theoretical neurobiology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • van Vreeswijk CA, Sompolinsky H (1996) Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science 274:1724–1726

    Article  PubMed  Google Scholar 

  • Vogels TP, Sprekeler H, Zenke F, Clopath C, Gerstner W (2012) Inhibitory plasticity balances excitation and inhibition in sensory pathways and memory networks. Science 336(6083):802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Schwabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Schwabe, L. (2014). Balanced State. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_573-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_573-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics