Skip to main content

Micro-Wires

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 176 Accesses

Definition

Microwires consist of a cylindrical conductor with a diameter on the order of micrometers and, generally, have an insulating sheath. They are commonly used for recording of neural signals or electrical stimulation of nervous tissue.

Detailed Description

Microwires can range anywhere from roughly five to a few hundred microns without insulation. They consist of a conductive material such as pure metals (e.g. gold, Tungsten or stainless steel) or metal alloys (e.g. Pt/Ir or Nichrome). Most pure metals have the advantage of being biologically inert, whereas metal alloys are often favored for their lower cost and better physical properties such as higher flexibility and strength. Typical materials used to electrically insulate the wires from their surroundings are Teflon, Parylene, Formvar, Isonel, polyimide or polyurethane. The insulating layer adds at least 3–7 μm to the wire thickness.

Microwires are available on a spool as single wires or multi-stranded wires where two or...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bae WJ, Ruddy BP, Richardson AG, Hunter IW, Bizzi E (2008) Cortical recording with polypyrrole microwire electrodes. Conf Proc IEEE Eng Med Biol Soc 2008:5794–5797

    PubMed  Google Scholar 

  • Baker SN, Philbin N, Spinks R, Pinches EM, Wolpert DM, MacManus DG, Pauluis Q, Lemon RN (1999) Multiple single unit recording in the cortex of monkeys using independently moveable microelectrodes. J Neurosci Methods 94(1):5–17

    Article  CAS  PubMed  Google Scholar 

  • Bamford JA, Mushahwar VK (2011) Intraspinal microstimulation for the recovery of function following spinal cord injury. Prog Brain Res 194:227–239

    Article  PubMed Central  PubMed  Google Scholar 

  • Bretzner F, Drew T (2005) Contribution of the motor cortex to the structure and the timing of hindlimb locomotion in the cat: a microstimulation study. J Neurophysiol 94(1):657–672

    Article  PubMed  Google Scholar 

  • Chang FC, Scott TR, Harper RM (1988) Methods of single unit recording from medullary neural substrates in awake, behaving guinea pigs. Brain Res Bull 21(5):749–756

    Article  CAS  PubMed  Google Scholar 

  • Gray CM, Maldonado PE, Wilson M, McNaughton B (1995) Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex. J Neurosci Methods 63(1–2):43–54

    Article  CAS  PubMed  Google Scholar 

  • Jackson A, Fetz EE (2007) Compact movable microwire array for long-term chronic unit recording in cerebral cortex of primates. J Neurophysiol 98(5):3109–3118

    Article  PubMed  Google Scholar 

  • Karumbaiah L, Saxena T, Carlson D, Patil K, Patkar R, Gaupp EA, Betancur M, Stanley GB, Carin L, Bellamkonda RV (2013) Relationship between intracortical electrode design and chronic recording function. Biomaterials 34(33):8061–8074

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Branner A, Gulati T, Giszter SF (2013) Braided multi-electrode probes: mechanical compliance characteristics and recordings from spinal cords. J Neural Eng 10(4):045001

    Article  PubMed  Google Scholar 

  • Kralik JD, Dimitrov DF, Krupa DJ, Katz DB, Cohen D, Nicolelis MA (2001) Techniques for chronic, multisite neuronal ensemble recordings in behaving animals. Methods 25:121–150

    Article  CAS  PubMed  Google Scholar 

  • Lago N, Yoshida K, Koch KP, Navarro X (2007) Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans Biomed Eng 54(2):281–290

    Article  PubMed  Google Scholar 

  • Lawrence SM, Dhillon GS, Jensen W, Yoshida K, Horch KW (2004) Acute peripheral nerve recording characteristics of polymer-based longitudinal intrafascicular electrodes. IEEE Trans Neural Syst Rehabil Eng 12(3):345–348

    Article  PubMed  Google Scholar 

  • Lehew G, Nicolelis MAL (2008) State-of-the-art microwire array design for chronic neural recordings in behaving animals. In: Nicolelis MAL (ed) Methods for neural ensemble recordings, 2nd edn. CRC Press, Boca Raton, chapter 1

    Google Scholar 

  • McNaughton BL, O’Keefe J, Barnes CA (1983) The stereotrode: a new technique for simultaneous isolation of several single units in the central nervous system from multiple unit records. J Neurosci Methods 8(4):391–397

    Article  CAS  PubMed  Google Scholar 

  • Micera S, Navarro X (2009) Bidirectional interfaces with the peripheral nervous system. Int Rev Neurobiol 86:23–38

    Article  PubMed  Google Scholar 

  • Nelson TS, Suhr CL, Lai A, Halliday AJ, Freestone DR, McLean KJ, Burkitt AN, Cook MJ (2011) Exploring the tolerability of spatiotemporally complex electrical stimulation paradigms. Epilepsy Res 96(3):267–275

    Article  PubMed  Google Scholar 

  • Nguyen DP, Layton SP, Hale G, Gomperts SN, Davidson TJ, Kloosterman F, Wilson MA (2009) Micro-drive array for chronic in vivo recording: tetrode assembly. J Vis Exp 409:403–407

    Google Scholar 

  • Nicolelis MA, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003) Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad Sci U S A 100(19):11041–11046

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Otto KJ, Rousche PJ, Kipke DR (2005) Cortical microstimulation in auditory cortex of rat elicits best-frequency dependent behaviors. J Neural Eng 2(2):42–51

    Article  PubMed  Google Scholar 

  • Prasad A, Sahin M (2011) Chronic recordings from the rat spinal cord descending tracts with microwires. Conf Proc IEEE Eng Med Biol Soc 2011:2993–2996

    PubMed Central  PubMed  Google Scholar 

  • Rennaker RL, Ruyle AM, Street SE, Sloan AM (2005) An economical multi-channel cortical electrode array for extended periods of recording during behavior. J Neurosci Methods 142(1):97–105

    Article  CAS  PubMed  Google Scholar 

  • Santos L, Opris I, Fuqua J, Hampson RE, Deadwyler SA (2012) A novel tetrode microdrive for simultaneous multi-neuron recording from different regions of primate brain. J Neurosci Methods 205(2):368–374

    Article  PubMed Central  PubMed  Google Scholar 

  • Tseng WT, Yen CT, Tsai ML (2011) A bundled microwire array for long-term chronic single-unit recording in deep brain regions of behaving rats. J Neurosci Methods 201(2):368–376

    Article  PubMed  Google Scholar 

  • Westby GW, Wang H (1997) A floating microwire technique for multichannel chronic neural recording and stimulation in the awake freely moving rat. J Neurosci Methods 76(2):123–133

    Article  CAS  PubMed  Google Scholar 

  • Williams JC, Rennaker RL, Kipke DR (1999) Long-term neural recording characteristics of wire microelectrode arrays implanted in cerebral cortex. Brain Res Brain Res Protoc 4(3):303–313

    Article  CAS  PubMed  Google Scholar 

  • Wilson MA, McNaughton BL (1993) Dynamics of the hippocampal ensemble code for space. Science 261(5124):1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Winslow BD, Tresco PA (2010) Quantitative analysis of the tissue response to chronically implanted microwire electrodes in rat cortex. Biomaterials 31(7):1558–1567

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Horch K (1993) Selective stimulation of peripheral nerve fibers using dual intrafascicular electrodes. IEEE Trans Biomed Eng 40(5):492–494

    Article  CAS  PubMed  Google Scholar 

  • Zhou JI, Dong Q, Zhuang LJ, Li R, Wang P (2012) Rapid odor perception in rat olfactory bulb by microelectrode array. J Zhejiang Univ Sci B 13(12):1015–1023

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almut Branner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Branner, A. (2014). Micro-Wires. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_597-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_597-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics