Skip to main content

Subthreshold Amplitude and Phase Resonance in Single Cells

Encyclopedia of Computational Neuroscience
  • 173 Accesses

Synonyms

Membrane potential resonance; Membrane potential or subthreshold preferred frequency responses to oscillatory inputs

Definition

Subthreshold (or membrane potential) resonance refers to the ability of neurons to exhibit a peak in their voltage amplitude response to oscillatory input currents at a preferred (resonant) frequency.

Subthreshold (or membrane potential) phase-resonance refers to the ability of neurons to exhibit a zero-phase (or zero-phase-shift) response to oscillatory input currents at a nonzero (phase-resonant) frequency.

Linear subthreshold resonance refers to the subthreshold resonant properties (amplitude and phase) in linear models. In this entry we focus on 2D and 3D linear and linearized conductance-based models.

Detailed Description

Introduction

Subthreshold resonance has been observed in various neuron types in the hippocampus and the entorhinal cortex (Hutcheon and Yarom 2000; Pike et al. 2000; Schreiber et al. 2004; Zemankovics et al. 2010; Hu et al. 2002...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alexander JC, Doedel EJ, Othmer HG (1990) On the resonance structure in a forced excitable system. SIAM J Appl Math 50:1373–1418

    Article  Google Scholar 

  • Art JJ, Crawford AC, Fettiplace R (1986) Electrical resonance and membrane currents in turtle cochlear hair cells. Hear Res 22:31–36

    Article  CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA, Rigas P, Tawara-Hirata Y (2007) Resonance (approximately 10 Hz) of excitatory networks in motor cortex: effects of voltage-dependent ion channel blockers. J Physiol 578:173–191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Engel TA, Schimansky-Geier L, Herz AV, Schreiber S, Erchova I (2008) Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol 100:1576–1588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560:89–110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gastrein P, Campanac E, Gasselin C, Cudmore RH, Bialowas A, Carlier E, Fronzaroli-Molinieres L, Ankri N, Debanne D (2011) The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical neurons in vitro. J Physiol 589:3753–3773

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea pig cortical neurons: physiology and modeling. J Physiol 483:621–640

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haas JS, White JA (2002) Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. J Neurophysiol 88:2422–2429

    Article  PubMed  Google Scholar 

  • Heys JG, Giacomo LM, Hasselmo ME (2010) Cholinergic modulation of the resonance properties of stellate cells in layer II of the medial entorhinal. J Neurophysiol 104:258–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu H, Vervaeke K, Graham JFL, Storm J (2009) Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. J Neurosci 29:14472–14483

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent Na+ current in rat hippocampal pyramidal cells. J Physiol 545(3):783–805

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996a) Models of subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:698–714

    CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996b) Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:683–697

    CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Yarom Y, Puil E (1994) Low threshold calcium current and resonance in thalamic neurons: a model of frequency preference. J Neurophysiol 71:583–594

    CAS  PubMed  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance oscillations and the intrinsic frequency preferences in neurons. Trends Neurosci 23:216–222

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich E (2006) Dynamical systems in neuroscience: the geometry of excitability and bursting. MIT Press, Cambridge, MA

    Google Scholar 

  • Izhikevich EM (2001) Resonate-and-fire neurons. Neural Netw 14:883–894

    Article  CAS  PubMed  Google Scholar 

  • Izhikevich EM (2002) Resonance and selective communication via bursts in neurons having subthreshold oscillations. Biosystems 67:95–102

    Article  PubMed  Google Scholar 

  • Kopell N, Howard LN (1973) Plane wave solutions to reaction diffusion systems. Stud Appl Math 42:291–328

    Google Scholar 

  • Leung LS, Yu HW (1998) Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. J Neurophysiol 79:1592–1596

    CAS  PubMed  Google Scholar 

  • Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O (2000) Distinct frequency preferences of different types of rat hippocampal neurons in response to oscillatory input currents. J Physiol 529:205–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puil E, Gimbarzevsky B, Miura RM (1986) Quantification of membrane properties of trigeminal root ganglions in guinea pigs. J Neurophysiol 55:995–1016

    CAS  PubMed  Google Scholar 

  • Reinker S, Puil E, Miura RM (2004) Membrane resonance and stochastic resonance modulate firing patterns of thalamocortical neurons. J Comput Neurosci 16:15–25

    Article  PubMed  Google Scholar 

  • Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    Article  PubMed  Google Scholar 

  • Rotstein HG (2013) Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. J Math Neurosci (In press)

    Google Scholar 

  • Rotstein HG, Nadim F (2013) Interaction between resonant and amplifying currents in two-dimensional neural models of frequency preference response to oscillatory input currents. J Comp Neurosci

    Google Scholar 

  • Rotstein HG, Oppermann T, White JA, Kopell N (2006) A reduced model for medial entorhinal cortex stellate cells: subthreshold oscillations, spiking and synchronization. J Comput Neurosci 21:271–292

    Article  PubMed  Google Scholar 

  • Schreiber S, Erchova I, Heinemann U, Herz AV (2004) Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. J Neurophysiol 92:408–415

    Article  PubMed  Google Scholar 

  • Sciamanna G, J WC (2011) The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. J Neurophysiol 106:2936–2949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Skinner FK (2006) Conductance-based models. Scholarpedia 1:1408

    Article  Google Scholar 

  • Tohidi V, Nadim F (2009) Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. J Neurosci 6427:6435

    Google Scholar 

  • Tseng H, Nadim F (2010) The membrane potential waveform on bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. J Neurosci 30:10809–10819

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang WT, Wan YH, Zhu JL, Lei GS, Wang YY, Zhang P, Hu SJ (2006) Theta-frequency membrane resonance and its ionic mechanisms in rat subicular pyramidal neurons. Neuroscience 140:45–55

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Hsiao CF, Chandler SH (2001) Membrane resonance and subthreshold membrane oscillations in mesencephalic v neurons: participants in burst generation. J Neurosci 21:3729–3739

    CAS  PubMed  Google Scholar 

  • Zemankovics R, Kali S, Páulsen O, Freund TF, Hájos N (2010) Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. J Physiol 588:2109–2132

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The author wishes to thank Farzan Nadim and Frances Skinner for useful comments. This work was supported by NSF grant DMS-1313861 (HGR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horacio G. Rotstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Rotstein, H.G. (2013). Subthreshold Amplitude and Phase Resonance in Single Cells. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_598-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_598-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Subthreshold Resonance and Phasonance in Single Neurons: 2D Models
    Published:
    13 November 2017

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_598-2

  2. Original

    Subthreshold Amplitude and Phase Resonance in Single Cells
    Published:
    08 February 2014

    DOI: https://doi.org/10.1007/978-1-4614-7320-6_598-1