Skip to main content

Olfactory Computation in Antennal Lobe and Mushroom Bodies

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 278 Accesses

Definition

The olfactory system maps complex and high dimensional stimuli (odors) into unique and reproducible dynamic ensembles of neuronal activity. In the insect, olfactory receptor neurons (ORNs) synapse onto a smaller group of excitatory projection neurons (PNs) and inhibitory local neurons (LNs) in the antennal lobe (AL) (Fig. 1). The odor information is then transferred to the mushroom body (MB), a structure analogous to the olfactory cortex and where olfactory memories are formed. Inhibitory circuits of the AL and the MB shape the odor representation as it progresses through the olfactory system. The insect system is advantageous for studying and modeling olfactory coding because it is relatively simple and amenable to genetic manipulation.

Fig. 1
figure 1

Information flow in the insect olfactory system. Olfactory receptor (OR) neurons in the antenna provide simply-structured input to the antennal lobe (AL). There, projection neurons (PNs) and local neurons (LNs) interact in part...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Assisi C, Stopfer M, Bazhenov M (2011) Using the structure of inhibitory networks to unravel mechanisms of spatiotemporal patterning. Neuron 69:373–386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Assisi C, Stopfer M, Bazhenov M (2012) Excitatory local interneurons enhance tuning of sensory information. PLoS Comput Biol 8:e1002563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bazhenov M et al (2001a) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron 30:553–567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bazhenov M et al (2001b) Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30:569–581

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bazhenov M, Stopfer M, Sejnowski TJ, Laurent G (2005) Fast odor learning improves reliability of odor responses in the locust antennal lobe. Neuron 46:483–492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Borgers C, Kopell N (2003) Synchronization in networks of excitatory and inhibitory neurons with sparse, random connectivity. Neural Comput 15:509–538

    Article  PubMed  Google Scholar 

  • Cassenaer S, Laurent G (2007) Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448:709–713

    Article  CAS  PubMed  Google Scholar 

  • Friedrich RW, Laurent G (2001) Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. Science 291:889–894

    Article  CAS  PubMed  Google Scholar 

  • Jortner RA, Farivar SS, Laurent G (2007) A simple connectivity scheme for sparse coding in an olfactory system. J Neurosci 27:1659–1669

    Article  CAS  PubMed  Google Scholar 

  • Kerszberg M, Masson C (1995) Signal-induced selection among spontaneous oscillatory patterns in a model of honeybee olfactory glomeruli. Biol Cybern 72:487–495

    Article  Google Scholar 

  • Linster C, Marsan D, Masson C, Kerszberg M (1994) Odor processing in the bee: a preliminary study of the role of central input to the antennal lobe. In: Cowan JD, Tesauro G, Alspector J (eds) Advances in neural information processing Systems, Morgan Kaufmann Publishers, 6, pp 527–534

    Google Scholar 

  • Linster C, Cleland TA (2001) How spike synchronization among olfactory neurons can contribute to sensory discrimination. J Comput Neurosci 10:187–193

    Article  CAS  PubMed  Google Scholar 

  • Linster C, Masson C (1996) A neural model of olfactory sensory memory in the honeybee’s antennal lobe. Neural Comput 8:94–114

    Article  Google Scholar 

  • MacLeod K, Backer A, Laurent G (1998) Who reads temporal information contained across synchronized and oscillatory spike trains? Nature 395:693–698

    Article  CAS  PubMed  Google Scholar 

  • Papadopoulou M, Cassenaer S, Nowotny T, Laurent G (2011) Normalization for sparse encoding of odors by a wide-field interneuron. Science 332:721–725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Orive J et al (2002) Oscillations and sparsening of odor representations in the mushroom body. Science 297:359–365

    Article  CAS  PubMed  Google Scholar 

  • Raman B, Joseph J, Tang J, Stopfer M (2010) Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors. J Neurosci 30:1994–2006

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sivan E, Kopell N (2006) Oscillations and slow patterning in the antennal lobe. J Comput Neurosci 20:85–96

    Article  PubMed  Google Scholar 

  • Stopfer M, Laurent G (1999) Short-term memory in olfactory network dynamics. Nature 402:664–668

    Article  CAS  PubMed  Google Scholar 

  • Stopfer M, Bhagavan S, Smith BH, Laurent G (1997) Impaired odour discrimination on desynchronization of odour-encoding neural assemblies. Nature 390:70–74

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by grant R01DC012943 from NIDCD and an NICHD intramural award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim Bazhenov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Bazhenov, M., Stopfer, M. (2013). Olfactory Computation in Antennal Lobe and Mushroom Bodies. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_612-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_612-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics