Skip to main content

Oculomotor Control, Models of

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 199 Accesses

Definition

A system of differential equations simulating the part of the brain that is responsible for the control of ocular movements. Each equation describes the evolution of the output of one unit (which can be a single neuron, a group of similar neurons, or the aggregate operation of a nucleus or brain area) given the inputs it receives and its intrinsic properties.

Detailed Description

The oculomotor system is one of the best understood parts of the mammalian brain. It is made up of more than 50 different classes of cells occupying several areas and nuclei distributed through much of the brain of higher mammals. Computer models allow us to organize the mass of available information about this system, to determine whether existing knowledge is sufficient to account for its overall properties as well as of the cells that comprise it, and to derive precise quantitative predictions in order to guide future research. Models are validated against experimental evidence, in that (1) model...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Anastasio TJ (1997) A burst-feedback model of fast-phase burst generation during nystagmus. Biol Cybern 76:139–152

    Article  Google Scholar 

  • Arai K, Keller EL, Edelman JA (1994) Two-dimensional neural network model of the primate saccadic system. Neural Netw 7:1115–1135

    Article  Google Scholar 

  • Bozis A, Moschovakis AK (1998) Neural network simulations of the primate oculomotor system. III. A one-dimensional one-directional model of the superior colliculus. Biol Cybern 79:215–230

    Article  CAS  PubMed  Google Scholar 

  • Chun K-S, Robinson DA (1978) A model of quick phase generation in the vestibuloocular reflex. Biol Cybern 28:209–221

    Article  CAS  PubMed  Google Scholar 

  • Eckmiller R (1987) Neural control of pursuit eye movements. Physiol Rev 67:797–857

    CAS  PubMed  Google Scholar 

  • Goldstein HP (1987) Modeling post-saccadic drift: dynamic overshoot may be passive. In: Thirteenth annual northeast bioengineering conference, Philadelphia, pp 245–248

    Google Scholar 

  • Kitama T, Ohki Y, Shimazu H, Tanaka M, Yoshida K (1995) Site of interaction between saccade signals and vestibular signals induced by head rotation in the alert cat: functional properties and afferent organization of burster-driving neurons. J Neurophysiol 74:273–287

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Morris EJ, Tychsen L (1987) Visual motion processing and sensory-motor integration for smooth pursuit eye movements. Ann Rev Neurosci 10:97–129

    Article  CAS  PubMed  Google Scholar 

  • Moschovakis AK (1994) Neural network simulations of the primate oculomotor system. I. The vertical saccadic burst generator. Biol Cybern 70:291–302

    Article  CAS  PubMed  Google Scholar 

  • Moschovakis AK (1997) The neural integrators of the mammalian saccadic system. Front Biosci 2:552–577

    Google Scholar 

  • Moschovakis AK, Scudder CA, Highstein SM (1996) The microscopic anatomy and physiology of the mammalian saccadic system. Prog Neurobiol 50:133–254

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA (1981a) Control of eye movements. In: Brooks VB (ed) Handbook of physiology. The nervous system. Williams and Wilkins, Baltimore, pp 1275–1320

    Google Scholar 

  • Robinson DA (1981b) The use of control systems analysis in the neurophysiology of eye movements. Ann Rev Neurosci 4:463–503

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA, Gordon JL, Gordon SE (1986) A model of the smooth pursuit eye movement system. Biol Cybern 55:43–57

    Article  CAS  PubMed  Google Scholar 

  • Scudder CA (1988) A new local feedback model of the saccadic burst generator. J Neurophysiol 59:1455–1475

    CAS  PubMed  Google Scholar 

  • Sklavos SG, Moschovakis AK (2002) Neural network simulations of the primate oculomotor system. IV. A distributed bilateral stochastic model of the neural integrator of the vertical saccadic system. Biol Cybern 86:97–109

    Article  CAS  PubMed  Google Scholar 

  • Sklavos S, Porrill J, Kaneko CRS, Dean P (2005) Evidence for wide range of time scales in oculomotor plant dynamics: implications for models of eye-movement control. Vision Res 45:1525–1542

    Article  PubMed Central  PubMed  Google Scholar 

  • Waitzman DM, Ma TP, Optican LM, Wurtz RH (1991) Superior colliculus neurons mediate the dynamic characteristics of saccades. J Neurophysiol 66:1716–1737

    CAS  PubMed  Google Scholar 

Further Reading

  • Moschovakis AK (2009) Neural control of eye movements. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedia of neuroscience, vol 4. Springer, Berlin, pp 2559–2564

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adonis K. Moschovakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Moschovakis, A.K. (2013). Oculomotor Control, Models of. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_653-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_653-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics