Skip to main content

Mesoscopic Anatomy and Neural Population Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 197 Accesses

Definition

For the purposes of constructing biologically plausible neural population and field models of cortical activity, it is necessary to take into account the anatomical and histological organization of the cortex that is intermediate in scale between that of the single neuron and the whole brain. The anatomy of the intermediate, or mesoscopic, level of cortical organization is defined by the variety of neuronal and nonneuronal cellular components, their spatial disposition and organization, and the structural features of their bulk connectivity.

Detailed Description

The thin outer rind of the mammalian brain, the neocortex, is generally thought to be the principal structure responsible for the generation and elaboration of purposeful activity. For a structure that is between 1 and 5 mm thick and has a surface area of only ~0.19 m2 (Van Essen 2005) in humans, it has an unparalleled degree of structural complexity with the ~2.1010 neurons (Pakkenberg and Gundersen 1997) broadly...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Brodmann K, Garey LJ (2006) Brodmann’s localisation in the cerebral cortex: the principles of comparative localisation in the cerebral cortex based on cytoarchitectonics – translated with editorial notes and an introduction, 3rd edn. Springer, New York

    Google Scholar 

  • Buxhoeveden DP, Casanova MF (2002) The minicolumn and evolution of the brain. Brain Behav Evol 60:125–151

    Article  PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic, and motor cortex of the developing rhesus monkey. Brain Res 122:393–413

    Article  CAS  PubMed  Google Scholar 

  • Jones EG (2000) Microcolumns in the cerebral cortex. Proc Natl Acad Sci U S A 97:5019–5021

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones EG, Burton H, Porter R (1975) Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates. Science 190:572–574

    Article  CAS  PubMed  Google Scholar 

  • Liley D, Foster B, Bojak I (2012) Cooperative populations of neurons: mean field models of mesoscopic brain activity. In: Le Novère N (ed) Computational systems neurobiology. Springer, New York

    Google Scholar 

  • Lübke J, Feldmeyer D (2007) Excitatory signal flow and connectivity in a cortical column: focus on barrel cortex. Brain Struct Funct 212:3–17

    Article  PubMed  Google Scholar 

  • Markram H (2008) Fixing the location and dimensions of functional neocortical columns. HFSP J 2:132–135

    Article  PubMed Central  PubMed  Google Scholar 

  • Markram H, Toledo-Rodriguez M, Wang Y, Gupta A, Silberberg G, Wu C (2004) Interneurons of the neocortical inhibitory system. Nat Rev Neurosci 5:793–807

    Article  CAS  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1997) The columnar organization of the neocortex. Brain 120:701–722

    Article  PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, van Huijzen C (2008) The human central nervous system, 4th edn. Springer, Berlin, pp 491–679

    Google Scholar 

  • Pakkenberg B, Gundersen HJG (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320

    Article  CAS  PubMed  Google Scholar 

  • Petersen CCH (2007) The functional organization of the barrel cortex. Neuron 56:339–355

    Article  CAS  PubMed  Google Scholar 

  • Rockland KS, Ichinohe N (2004) Some thoughts on cortical minicolumns. Exp Brain Res 158:265–277

    Article  PubMed  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    Article  CAS  PubMed  Google Scholar 

  • Spruston N (2008) Pyramidal neurons: dendritic structure and synaptic integration. Nat Rev Neurosci 9:206–221

    Article  CAS  PubMed  Google Scholar 

  • Szentágothai J (1983) The modular architectonic principle of neural centers. Rev Physiol Biochem Pharmacol 98:11–61

    Article  PubMed  Google Scholar 

  • Tang Y, Nyengaard JR, De Groot DM, Gundersen HJG (2001) Total regional and global number of synapses in the human brain neocortex. Synapse 41:258–273

    Article  CAS  PubMed  Google Scholar 

  • Thomson AM, Bannister AP (2003) Interlaminar connections in the neocortex. Cereb Cortex 13:5–14

    Article  PubMed  Google Scholar 

  • Van Essen DC (2005) A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28:635–662

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. J. Liley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Liley, D.T.J. (2013). Mesoscopic Anatomy and Neural Population Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_66-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_66-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics