Skip to main content

Neuropercolation and Neural Population Models

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 214 Accesses

Definition

Neuropercolation is a family of probabilistic models based on the mathematical theory of probabilistic cellular automata on lattices and random graphs. Neuropercolation is motivated by the structural and dynamical properties of large-scale neural populations. Neuropercolation extends the concept of phase transitions to interactive neural populations exhibiting frequent sudden transitions in their spatiotemporal dynamics. Neuropercolation develops equations for the probability distributions of macroscopic state variables by generalizing percolation theory as an alternative to models based on differential equations.

Mathematical Description of Neuropercolation

Neuropercolation uses the tools of random graphs and percolation theory developed over the past 50 years to establish a rigorous model of brain networks with complex dynamics (Erdos and Renyi 1960; Bollobás 1985; Bollobas and Riordan 2006). Neuropercolation is a natural domain for modeling collective properties of brain...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aizeman M, Lebowitz JL (1988) Metastability effects in bootstrap percolation. J Phys A Math Gen 21:3801–3813

    Article  Google Scholar 

  • Balister P, Bollobas B, Kozma R (2006) Large-scale deviations in probabilistic cellular automata. Random Struct Algorithm 29:399–415

    Article  Google Scholar 

  • Balister P, Bollobás B, Johnson JR, Walters M (2010) Random majority percolation. Random Struct Algorithm 36(3):315–340

    Google Scholar 

  • Berlekamp ER, Conway JH, Guy RK (1982) Winning ways for your mathematical plays. Games in general, vol 1, vol 1. Academic, New York

    Google Scholar 

  • Binder K (1981) Finite scale scaling analysis of Ising model block distribution function. Z Phys B 43:119–140

    Article  Google Scholar 

  • Bollobás B (1985) Random graphs. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Bollobas B, Riordan O (2006) Percolation. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Bollobas B, Kozma R, Miklos D (eds) (2009) Handbook of large-scale random networks (Bolyai society mathematical studies). Springer, New York

    Google Scholar 

  • Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13(5):336–349

    CAS  PubMed  Google Scholar 

  • Chua LO (1998) CNN. A paradigm for complexity. World Scientific, Singapore

    Google Scholar 

  • Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17–61

    Google Scholar 

  • Freeman WJ (1975) Mass action in the nervous system. Academic, New York

    Google Scholar 

  • Freeman WJ (2001) How brains make up their minds. Columbia University Press, New York

    Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci U S A 79:2554–2558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kozma R, Freeman WJ (2009) The KIV model of intentional dynamics and decision making. Neur Netw 22(3):277–285

    Article  Google Scholar 

  • Kozma R, Puljic M (2013) Hierarchical random cellular neural networks for system-level brain-like signal processing. Neur Netw 45:101–110

    Article  Google Scholar 

  • Kozma R, Puljic M, Balister P, Bollobas B, Freeman WJ (2005) Phase transitions in the neuropercolation model of neural populations with mixed local and non-local interactions. Biol Cybern 92(6):367–379

    Article  PubMed  Google Scholar 

  • Makowiec D (1999) Stationary states for Toom cellular automata in simulations. Phys Rev E 60:3787–3796

    Article  CAS  Google Scholar 

  • Newman MEJ, Jensen I, Ziff RM (2002) Percolation and epidemics in a two-dimensional small world. Phys Rev E 65(021904):1–7

    Google Scholar 

  • Puljic M, Kozma R (2005) Activation clustering in neural and social networks. Complexity 10(4):42–50

    Article  Google Scholar 

  • Sornette D, Quillon G (2012) Dragon-kings: mechanisms, statistical methods and empirical evidence. Eur Phys J Special Topic 205(1):1–26

    Article  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of “small-world” networks. Nature 393:440–442

    Article  CAS  PubMed  Google Scholar 

  • Zamora-López G, Zhou C, Kurths J (2011) Exploring brain function from anatomical connectivity. Front Neurosci 5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Kozma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Kozma, R. (2013). Neuropercolation and Neural Population Models. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_71-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_71-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics