Skip to main content

Neuropharmacological Modeling, Pharmacogenomics and Ion Channel Modulation

  • Living reference work entry
  • First Online:
Encyclopedia of Computational Neuroscience
  • 179 Accesses

Synonyms

Channelopathy; Drug effect; Mechanisms of excitability; Modifiers; Pharmacogenomics

Definition

Ion channels are both the primary cause of excitability disorders (e.g., epilepsy; myotonia; cardiac arrhythmia) and the principle target of many pharmaceutical compounds. Because ion channels both respond to and regulate the cellular response to stimuli, they are the dominant molecules governing excitability of neurons and networks. Computational models of drug effects and genetic mutations reveal the mechanisms underlying channel function, allowing prediction to be validated in silico and generating new hypotheses that can be tested via biological experimentation.

Detailed Description

Ion channels containing an intrinsic ion permeable path can be broadly divided into two main functional categories, based on the mechanism by which they undergo the changes in protein conformation that opens or closes the ion permeation pathway (Sharman et al. 2013), allowing ions to flow down their...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bertaccini EJ, Yoluk O, Lindahl ER, Trudell JR (2013) Assessment of homology templates and an anesthetic binding site within the γ-aminobutyric acid receptor. Anesthesiology 119:1087–1095

    Article  CAS  PubMed  Google Scholar 

  • Doupnik CA, Davidson N, Lester HA (1995) The inward rectifier potassium channel family. Curr Opin Neurobiol 5(3):268–277

    Article  CAS  PubMed  Google Scholar 

  • Furutani K, Ohno Y, Inanobe A, Hibino H, Kurachi Y (2009) Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel. Mol Pharmacol 75(6):1287–1295. doi:10.1124/mol.108.052936. Epub 2009 Mar 5. Erratum in: Mol Pharmacol. 2009 Aug;76(2):451

    Article  CAS  PubMed  Google Scholar 

  • Giudicessi JR, Kapplinger JD, Tester DJ, Alders M, Salisbury BA, Wilde AA, Ackerman MJ (2012) Phylogenetic and physicochemical analyses enhance the classification of rare nonsynonymous single nucleotide variants in type 1 and 2 long-QT syndrome. Circ Cardiovasc Genet 5(5):519–528

    Article  PubMed Central  PubMed  Google Scholar 

  • John J, Manchanda R (2011) Modulation of synaptic potentials and cell excitability by dendritic KIR and KAs channels in nucleus accumbens medium spiny neurons: a computational study. J Biosci 36(2):309–328

    Article  PubMed  Google Scholar 

  • Martell AL, Ramirez JM, Lasky RE, Dwyer JE, Kohrman M, van Drongelen W (2012) The role of voltage dependence of the NMDA receptor in cellular and network oscillation. Eur J Neurosci 36(2):2121–2136

    Article  PubMed Central  PubMed  Google Scholar 

  • Mullins JG, Chung SK, Rees MI (2010) Fine architecture and mutation mapping of human brain inhibitory system ligand gated ion channels by high-throughput homology modeling. Adv Protein Chem Struct Biol 80:117–152

    Article  CAS  PubMed  Google Scholar 

  • Oh M, Zhao S, Matveev V, Nadim F (2012) Neuromodulatory changes in short-term synaptic dynamics may be mediated by two distinct mechanisms of presynaptic calcium entry. J Comput Neurosci 33(3):573–585

    Article  PubMed  Google Scholar 

  • Sharman JL, Benson HE, Pawson AJ, Lukito V, Mpamhanga CP, Bombail V, Davenport AP, Peters JA, Spedding M, Harmar AJ, Nc I (2013) IUPHAR-DB: updated database content and new features. Nucleic Acids Res 41(Database issue):D1083–D1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shevtsova NA, Manzke T, Molkov YI, Bischoff A, Smith JC, Rybak IA, Richter DW (2011) Computational modelling of 5-HT receptor-mediated reorganization of the brainstem respiratory network. Eur J Neurosci 34(8):1276–1291

    Article  PubMed Central  PubMed  Google Scholar 

  • Tigerholm J, Fransén E (2011) Reversing nerve cell pathology by optimizing modulatory action on target ion channels. Biophys J 101(8):1871–1879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tigerholm J, Börjesson SI, Lundberg L, Elinder F, Fransén E (2012) Dampening of hyperexcitability in CA1 pyramidal neurons by polyunsaturated fatty acids acting on voltage-gated ion channels. PLoS One 7(9):e44388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Traub RD, Buhl EH, Gloveli T, Whittington MA (2003) Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na + conductance or by blocking BK channels. J Neurophysiol 89(2):909–921

    Article  CAS  PubMed  Google Scholar 

  • Verheij MH, Thompson AJ, van Muijlwijk-Koezen JE, Lummis SC, Leurs R, de Esch IJ (2012) Design, synthesis, and structure-activity relationships of highly potent 5-HT3 receptor ligands. J Med Chem 55(20):8603–8614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yau HJ, Baranauskas G, Martina M (2010) Flufenamic acid decreases neuronal excitability through modulation of voltage-gated sodium channel gating. J Physiol 588(Pt 20):3869–3882

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Zou B, Yu H, Moretti A, Wang X, Yan W, Babcock JJ, Bellin M, McManus OB, Tomaselli G, Nan F, Laugwitz KL, Li M (2012) Modulation of hERG potassium channel gating normalizes action potential duration prolonged by dysfunctional KCNQ1 potassium channel. Proc Natl Acad Sci U S A 109(29):11866–11871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zuberi SM, Brunklaus A, Birch R, Reavey E, Duncan J, Forbes GH (2011) Genotype-phenotype associations in SCN1A-related epilepsies. Neurology 76(7):594–600

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tara Klassen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this entry

Cite this entry

Klassen, T., Chen, T.T. (2013). Neuropharmacological Modeling, Pharmacogenomics and Ion Channel Modulation. In: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7320-6_715-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7320-6_715-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Online ISBN: 978-1-4614-7320-6

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics